首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
Microtubules and actin filaments are two of the major components of the cytoskeleton. There is accumulating evidence for interaction between the two networks. Both the alpha- and beta-subunits of tubulin exist as numerous isotypes, some of which have been highly conserved in evolution. In an effort to better understand the functional significance of tubulin isotypes, we used a double immunofluorescence labeling technique to investigate the interactions between the tubulin beta-isotypes and the actin stress fiber network in cultured rat kidney mesangial cells, smooth-muscle-like cells from the renal glomerulus. Removal of the soluble cytoplasmic and nucleoplasmic proteins by detergent extraction caused the microtubule network to disappear while the stress fiber network was still present. In these extracted cells, the betaI- and betaII-tubulin isotypes were no longer present in the cytoplasm while the betaIV-isotype co-localized with actin stress fibers. Co-localization between betaIV-tubulin and actin stress fibers was also observed when the microtubule network was disrupted by the anti-tubulin drug colchicine and also by microinjection of the betaIV-tubulin antibody. Our results suggest that the betaIV isotype of tubulin may be involved in interactions between microtubules and actin.  相似文献   

2.
Antibody against tubulin from the outer doublets of sea urchin sperm flagella reacts with tubulin-containing structures in mammalian cells. Thus cytoplasmic microtubules, vinblastine-induced paracrystals and the full spectrum of mitotic figures can be visualized by immunofluorescence. These results show that the tubulin structure has been highly conserved during evolution.  相似文献   

3.
G Albrecht-Buehler 《Cell》1977,12(2):333-339
Phagokinetic tracks were used to determine the current direction of migration in 3T3 cells. Comparing this direction with the orientation of actin or tubulin-containing cellular structures by indirect immunofluorescence, the following results were obtained. First, the main actin-containing bundles were located at the bottom and tail end of 3T3 cells and ran parallel to the current or preceding direction of migration. Second, the 3 micrometer long rod-like structure (primary cilium), which contains tubulin and which has been observed by other investigators in transmission electron microscopy (Barnes, 1961; Sorokin, 1962; Wheatley, 1969) and in indirect immunofluorescence (Osborn and Weber, 1976), was oriented predominantly parallel to the substrate and to the current movement direction. It seems possible that the primary cilium has a role in the directional control of a migrating 3T3 cell, and that the main actin containing bundles act as substrate-attached rails along which the nucleus and bulk cytoplasm slide during displacement of the cells.  相似文献   

4.
Acetylcholine receptor (AChR) clusters of cultured rat myotubes, isolated by extraction with saponin (Bloch, R. J., 1984, J. Cell Biol. 99:984-993), contain a polypeptide that co-electrophoreses with purified muscle actins. A monoclonal antibody against actin reacts in immunoblots with this polypeptide and with purified actins. In indirect immunofluorescence, the antibody stains isolated AChR clusters only at AChR domains, strips of membrane within clusters that are rich in receptor. It also stains the postsynaptic region of the neuromuscular junction of adult rat skeletal muscle. Semiquantitative immunofluorescence analyses show that labeling by antiactin of isolated analyses show that labeling by antiactin of isolated AChR clusters is specific and saturable and that it varies linearly with the amount of AChR in the cluster. Filaments of purified gizzard myosin also bind preferentially at AChR-rich regions, and this binding is inhibited by MgATP. These experiments suggest that actin is associated with AChR-rich regions of receptor clusters. Depletion of actin by extraction of isolated clusters at low ionic strength selectively releases the actin-like polypeptide from the preparation. Simultaneously, AChRs redistribute within the plane of the membrane of the isolated clusters. Similarly, brief digestion with chymotrypsin reduces immunofluorescence staining and causes AChR redistribution. Treatments that deplete AChR from clusters in intact cells also reduce immunofluorescent staining for actin in isolated muscle membrane fragments. Upon reversal of these treatments, cluster reformation occurs in regions of the membrane that also stain for actin. I conclude that actin is associated with AChR domains and that changes in this association are accompanied by changes in the organization of isolated AChR clusters.  相似文献   

5.
Using commercial monoclonal antibodies against actin and tubulin (alpha and beta), the respective antigens were localized on semithin and ultrathin sections of the rat testis. Tubulin immunofluorescence was found in the socalled manchette surrounding the heads of the maturating spermatids as well as the sperm tail. The distribution pattern varied with sperm development. Modified Sertoli cells found at the transition between the seminiferous tubules and the rete testis displayed much filamentous tubulin-reactive material. The immunofluorescence findings could be confirmed at the ultrastructural level using the indirect immunogold method. Actin immunofluorescence was demonstrated in vascular smooth muscle cells, interstitial macrophages and - most intensely - in peritubular cells. Inside the seminiferous tubules the Sertoli cell junctions and the ectoplasmic specializations of the Sertoli cells that follow the outer contour of spermatid heads displayed distinct actin immunofluorescence. In addition to the locations mentioned, actin-like immunoreactivity was visualized at the ultrastructural level in the chromatoid body and the subacrosomal space of spermatids as well as on the outer dense fibers of the sperm tail. Immunoblotting experiments with actin antibodies showed that in extracts from testicular spermatozoa, intact or fragmented into heads and tails, from isolated Sertoli cells grown in vitro, and from testis tissue in addition to authentic actin a protein was present in sperm tail extracts that strongly bound the actin antibody. This protein may be an actin-related protein and may be responsible for the actin-like immunoreactivity of the outer dense fibers of the sperm tail.  相似文献   

6.
Fat-storing cells (FSCs) show unique morphology containing many lipid droplets in the cytoplasm. In this study, we found that a membrane skeletal protein, fodrin, shows peculiar distribution in FSCs of rat liver. By immunofluorescence microscopy of FSCs in culture, intense labeling for fodrin was seen as coarse filaments in the cytoplasm. Especially in FSCs isolated from vitamin A-treated rats, the labeling was often seen as many small rings in the cytoplasm. In contrast, labeling for fodrin in human fibroblasts or rat adipocytes in culture was seen diffusely in the cell cortex. Distribution of actin, tubulin, vimentin, and desmin in FSCs was also examined, but none of them appeared correlated with fodrin. By immunoelectron microscopy using nanogold labeling with silver enhancement, positive labeling for fodrin was seen around some lipid droplets in FSCsin vivo.We assume that the peculiar distribution of fodrin may be related to the morphological characteristics of FSCs.  相似文献   

7.
8.
Changes in solubility and transport rate of cytoskeletal proteins during regeneration were studied in the motor fibers of the rat sciatic nerve. Nerves were injured by freezing at the midthigh level either 1-2 weeks before (experiment I) or 1 week after radioactive labeling of the spinal cord with L-[35S]methionine (experiment II). Labeled proteins in 6-mm consecutive segments of the nerve 2 weeks after labeling were analyzed following fractionation into soluble and insoluble populations with 1% Triton at 4 degrees C. When axonal transport of newly synthesized cytoskeleton was examined in the regenerating nerve in experiment I, a new faster component enriched in soluble tubulin and actin was observed that was not present in the control nerve. The rate of the slower main component containing most of the insoluble tubulin and actin together with neurofilament proteins was not affected. A smaller but significant peak of radioactivity enriched in soluble tubulin and actin was also detected ahead of the main peak when the response of the preexisting cytoskeleton was examined in experiment II. It is thus concluded that during regeneration changes in the organization take place in both the newly synthesized and the preexisting axonal cytoskeleton, resulting in a selective acceleration in rate of transport of soluble tubulin and actin.  相似文献   

9.
Summary Osteocalcin was localized by indirect immunogold staining of thin frozen sections of rat tooth germs which had been fixed by different methods. Acrolein fixation proved to be satisfactory considering the preservation of fine structure and antigenicity. In odontoblasts, osteocalcin was found to be localized in the cisternae of the rough endoplasmic reticulum and Golgi apparatus. Few positive transport vesicles were found. Staining for osteocalcin in odontoblastic processes was only observed after strong fixation and was intense in odontoblasts engaged in early dentine formation. Predentine was slightly positive in the neighbourhood of positive processes. Matrix vesicles were negative and strong osteocalcin labeling of dentine seemed to appear after the onset of mineralization.  相似文献   

10.
Osteocalcin was localized by indirect immunogold staining of thin frozen sections of rat tooth germs which had been fixed by different methods. Acrolein fixation proved to be satisfactory considering the preservation of fine structure and antigenicity. In odontoblasts, osteocalcin was found to be localized in the cisternae of the rough endoplasmic reticulum and Golgi apparatus. Few positive transport vesicles were found. Staining for osteocalcin in odontoblastic processes was only observed after strong fixation and was intense in odontoblasts engaged in early dentine formation. Predentine was slightly positive in the neighbourhood of positive processes. Matrix vesicles were negative and strong osteocalcin labeling of dentine seemed to appear after the onset of mineralization.  相似文献   

11.
GPC‐1 (glypican‐1) is a cell surface heparan sulfate proteoglycan that acts as a co‐receptor for heparin‐binding growth factors and members of the TGF‐β (transforming growth factor beta‐1) family. The function of cell‐surface proteoglycans in the reparative dentine process has been under investigation. Gpc‐1 was detected with similar frequency as tgf‐β1 in the cDNA library using mRNA from the odontoblast‐like cell‐enriched pulp of rat incisors. The aim of this study was to test our hypothesis that gpc‐1 may be related to reparative dentine formation. We examined the expression of this gene during the reparative dentine process, as well as the effect of gpc‐1 on odontoblast‐like cell differentiation using siRNA (small interfering RNA) to down‐regulate gpc‐1 expression. Immunohistological examination showed that GPC‐1 was expressed in pulp cells entrapped by fibrodentine and odontoblast‐like cells as well as TGF‐β1. The mRNAs for gpc‐1, ‐3 and ‐4, except for gpc‐2, were expressed during odontoblast‐like cell differentiation in pulp cells. The relative levels of gpc‐1 mRNA were increased prior to the differentiation stages and were decreased during the secretory and maturation stages of pulp cells. Down‐regulation of gpc‐1 expression resulted in a 3.9‐fold increase in tgf‐β1 expression in pulp cells and a 0.3‐fold decrease in dspp (dentine sialophosphoprotein) expression compared with control. These results suggested that gpc‐1 and tgfβ‐1 expression are necessary for the onset of differentiation, but should be down‐regulated before other molecules are implicated in the formation of reparative dentine. In conclusion, gpc‐1 expression in odontoblast‐like cells is associated with the early differentiation but not with the formation of reparative dentine.  相似文献   

12.
Abstract. The spatial relationships between the protein constituents of two junctional structures, adhaerens junctions and desmosomes, were determined by double immunofluorescence microscopy using marker proteins specific for these structures. Adhaerens junctions were visualized by immunofluorescent labeling for the membrane-associated protein vinculin and by their association with actin filaments. Desmosomal components were identified by labeling with anti-bodies to a group of minor desmosomal plaque proteins (DP1 antigens) and their association with filaments stained by cytokeratin antibodies. Double immunofluorescence microscopy of these components was performed in several tissues and cultured cells, including intact intestine, dissociated intestinal cells, and two morphologically different types of epithelial cells, cultured bovine kidney (MDBK), and mammary gland (BMGE) epithelial cells. This allowed the direct demonstration that each filament system is associated exclusively with its specific membrane-bound junctional protein. Vinculin and DP1-protein were found in distinct sites in the subapical intercellular junctional complex of intestinal epithelium and MDBK cells. Cell-substrate focal contacts contained vinculin and actin and showed no apparent relationships to the tonofilament system whereas intercellular contacts of BMGE cells were characterized by positive staining for DP1-protein and associated cytokeratin filaments. Immunolabeling of the cultured cells at different intervals after plating for the cytoskeletal elements and their membrane anchorage proteins was used to determine the temporal sequence of their organization. We propose that this approach may be used for the molecular definition and identification of cellular contacts and junctions as well as for studies of junction topology, dynamics of junction-cytoskeleton interactions, and junction biogenesis.  相似文献   

13.
The distribution of actin and tubulin during the cell cycle of the budding yeast Saccharomyces was mapped by immunofluorescence using fixed cells from which the walls had been removed by digestion. The intranuclear mitotic spindle was shown clearly by staining with a monoclonal antitubulin; the presence of extensive bundles of cytoplasmic microtubules is reported. In cells containing short spindles still entirely within the mother cells, one of the bundles of cytoplasmic microtubules nearly always extended to (or into) the bud. Two independent reagents (anti-yeast actin and fluorescent phalloidin) revealed an unusual distribution of actin: it was present as a set of cortical dots or patches and also as distinct fibers that were presumably bundles of actin filaments. Double labeling showed that at no stage in the cell cycle do the distributions of actin and tubulin coincide for any significant length, and, in particular, that the mitotic spindle did not stain detectably for actin. However, both microtubule and actin staining patterns change in a characteristic way during the cell cycle. In particular, the actin dots clustered in rings about the bases of very small buds and at the sites on unbudded cells at which bud emergence was apparently imminent. Later in the budding cycle, the actin dots were present largely in the buds and, in many strains, primarily at the tips of these buds. At about the time of cytokinesis the actin dots clustered in the neck region between the separating cells. These aspects of actin distribution suggest that it may have a role in the localized deposition of new cell wall material.  相似文献   

14.
Wang P  Li JC 《Life sciences》2007,81(14):1130-1140
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.  相似文献   

15.
Morphological and functional changes of chondrocytes are typical in OA cartilage. In this work, we have described noteworthy changes in intermediate filaments cytoskeleton evidenced by transmission electron microscopy. Alterations in the distribution as well as in the content of vimentin, actin, and tubulin have been described by specific fluorescence labelling of each cytoskeletal component and confocal analysis. Normal vs OA cartilages showed a reduction in the percentage of labelled chondrocytes of 37.1% for vimentin, 4.7% for actin, and 20.1% for tubulin. Statistical analysis of fluorescence intensities (mean % +/- SEM) between normal and OA rat cartilage revealed a highly significant difference in vimentin, a significant difference in tubulin, and a non-significant difference in actin. Moreover, by western blot, altered electrophoretic patterns were observed mainly for vimentin and tubulin in OA cartilage in comparison with normal cartilage. These results allow us to suggest that substantial changes in vimentin and tubulin cytoskeleton of chondrocytes might be involved in OA pathogenesis.  相似文献   

16.
Summary Using commercial monoclonal antibodies against actin and tubulin ( and ), the respective antigens were localized on semithin and ultrathin sections of the rat testis. Tubulin immunofluorescence was found in the socalled manchette surrounding the heads of the maturating spermatids as well as the sperm tail. The distribution pattern varied with sperm development. Modified Sertoli cells found at the transition between the seminiferous tubules and the rete testis displayed much filamentous tubulin-reactive material. The immunofluorescence findings could be confirmed at the ultrastructural level using the indirect immunogold method. Actin immunofluorescence was demonstrated in vascular smooth muscle cells, interstitial macrophages and — most intensely — in peritubular cells. Inside the seminiferous tubules the Sertoli cell junctions and the ectoplasmic specializations of the Sertoli cells that follow the outer contour of spermatid heads displayed distinct actin immunofluorescence. In addition to the locations mentioned, actin-like immunoreactivity was visualized at the ultrastructural level in the chromatoid body and the subacrosomal space of spermatids as well as on the outer dense fibers of the sperm tail.Immunoblotting experiments with actin antibodies showed that in extracts from testicular spermatozoa, intact or fragmented into heads and tails, from isolated Sertoli cells grown in vitro, and from testis tissue in addition to authentic actin a protein was present in sperm tail extracts that strongly bound the actin antibody. This protein may be an actin-related protein and may be responsible for the actin-like immunoreactivity of the outer dense fibers of the sperm tail.  相似文献   

17.
In the present report we show the distribution of multiple tubulin isoforms in Trichomonas vaginalis and Tritrichomonas foetus, flagellated parasitic protists of the urogenital tracts of human and cattle, respectively, using immunofluorescence and immunoelectron microscopy. We used several monoclonal and polyclonal anti-tubulin antibodies from different sources and recognizing variant tubulin isoforms. Our results demonstrate that: (1) there is a heterogeneous distribution of the different tubulin isoforms in the main microtubular cell structures, such as axostyle, flagella, basal bodies, and mitotic spindle, (2) the axostyle-pelta junction is a structure with high affinity for glutamylated tubulin antibodies in T. foetus, (3) the spindle labeling is positive to anti-glutamylated tubulin and anti-alpha-tubulin (TAT1 and purchased from Amersham) antibodies in T. vaginalis but it is negative in T. foetus, (4) the nuclear matrix and the cytosol presented positive reaction using glutamylated and TAT1 (anti-alpha-tubulin) antibodies only in T. vaginalis, and (5) the Golgi complex exhibited staining using the glutamylated tubulin antibody. The present data corroborate with the idea of the existence of a heterogeneous population of microtubules in these protists and of a subset of intracytoplasmic microtubules. Microtubule diversity may reflect distinct tubulins, diverse microtubule-associated proteins, or a combination of both.  相似文献   

18.
It has been previously demonstrated that both cytoplasmic microtubules and the microtubules of cilia, flagella, and sperm tail contain tubulin. Although the morphology of cytoplasmic microtubules and that of axonemes differs in cells from which they have been isolated, the tubulin of the two structures shares physical and chemical properties. In some mammalian tissues, such as tracheal epithelium, cilia and basal bodies are difficult to isolate and characterize. The use of an enzyme- labeled immunoglobulin probe would facilitate identification and in situ localization of such proteins. Tubulin prepared from porcine brain by ion-exchange chromatography and from rat brain by the method of cyclic polymerization and depolymerization with subsequent disk gel electrophoresis with SDS were injected intravenously into rabbits. The animals were intermittently bled and the antisera extracted. The specificity of the antisera was proved by indirect immunofluorescence staining of the mitotic spindle, specific blocking of spindle staining by purified tubulin and not by other proteins, staining of 3T3 cytoplasmic microtubules, single line on immunoelectrophoresis, failure of control antisera to show any of these, and precipitation of antibody with all tubulin preparations and not with actin. We have shown by electron microscopy of ciliated cells of the tracheal epithelium stained with antitubulin by the indirect enzyme-labeled antibody method that the basal bodies, outer doublets, and central pair of the cilia contain tubulin. This indicates that tubulin in microtubules of cilia and basal bodies of rat tracheal epithelium is antigenically similar to tubulin extracted from cytoplasmic neurotubules of brains from the same species and from a different mammalian species. No other axonemal structures stained with the antitubulin. Three different preparations of tubulin from pigs and rats were used to immunize rabbits. All elicited similar antisera which gave identical staining patterns. The specificity of the staining was demonstrated by the absence of staining with immune serum absorbed with purified tubulin, the absence of staining with preimmune serum, and the absence of staining if any of the reagents were omitted during the staining reaction.  相似文献   

19.
Odontoblasts are known to be involved in the process of dentinogenesis but it is not clear whether substances may also be deposited in predentine and dentine by passing between these cells. Although tight junctions have been described, it is not clear if they are macular or "leaky" as opposed to continuous or "tight". In this study use has been made of the permeability of fenestrated capillaries amongst the odontoblasts to deposit the penetrative tracer lanthanum in the interodontoblastic space. This was done by perfusion of anaesthetized rats with physiological solutions containing lanthanum nitrate at 37 degrees C. Immersion fixation of transverse segments of mandibular incisors and examination with an electron microscope showed that lanthanum could permeate 40-50 microns between the odontoblasts to reach the peripheral pulp. Towards the predentine, often less than 10 microns from the capillaries, its progress was abruptly and completely halted by the junctions at the apical ends of the odontoblast cell bodies. Lanthanum was not found in the predentine. The mature secretory odontoblasts in the rat incisor have therefore been shown to be joined by continuous tight junctions. In the process of dentinogenesis this means that all substances deposited in predentine and dentine must arrive by passing through the odontoblasts.  相似文献   

20.
Summary Several extracellular matrix components (procollagen type III, fibronectin, collagen type IV, laminin and nidogen) and microfilament constituents (actin, α-actinin and vinculin) were localized by indirect immunofluorescence microscopy in frozen sections of embryonic mouse molars. Nidogen was present at the epithelio-mesenchymal junction during polarization and initial steps of functional differentiation of odontoblasts. Nidogen disappeared at a stage where direct contacts between preameloblasts and predentin were required to allow the initiation of ameloblast polarization. Our observations concerning the distribution of procollagen type III and fibronectin during odontoblast differentiation add to current knowledge. Procollagen type III and fibronectin surrounding preodontoblasts accumulated at the apical part of polarizing and functional odontoblasts secreting “initial” predentin. Procollagen type III, but not fibronectin, disappeared in front of functional odontoblasts synthesizing “late” predentin and dentin. Fibronectin, present in “initial” predentin, was no longer detected in “late” predentin and dentin but was found between odontoblasts secreting “late” predentin and dentin. Actin, α-actinin and vinculin were concentrated in the peripheral cytoplasm of preameloblasts and accumulated at the apical and basal poles of functional ameloblasts. During differentiation of odontoblasts, the three proteins accumulated at the apical pole of these cells. Time and space correlations between matrix and microfilament modifications during odontoblast and ameloblast differentiation are documented. The possibility is discussed that there is transmembranous control of the cytoskeletal activities of odontoblasts and ameloblasts by the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号