首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and general methodology is described for the targeted enrichment and subsequent direct mass spectrometric characterization of sample subsets bearing various chemical functionalities from highly complex mixtures of biological origin. Specifically, sample components containing a chemical moiety of interest are first selectively labeled with perfluoroalkyl groups, and the entire sample is then applied to a perfluoroalkyl-silylated porous silicon (pSi) surface. Due to the unique hydrophobic and lipophobic nature of the perfluorinated tags, unlabeled sample components are readily removed using simple surface washes, and the enriched sample fraction can then directly be analyzed by desorption/ionization on silicon mass spectrometry (DIOS-MS). Importantly, this fluorous-based enrichment methodology provides a single platform that is equally applicable to both peptide as well as small molecule focused applications. The utility of this technique is demonstrated by the enrichment and mass spectrometric analysis of both various peptide subsets from protein digests as well as amino acids from serum.  相似文献   

2.
Protein posttranslational modifications (PTMs) are of increasing interest in biomedical research, yet studies rarely examine more than one PTM. One barrier to multi‐PTM studies is the time cost for both sample preparation and data acquisition, which scale linearly with the number of modifications. The most prohibitive requirement is often the need for large amounts of sample, which must be increased proportionally with the number of PTM enrichment steps. Here, a streamlined, quantitative label‐free proteomic workflow—“one‐pot” PTM enrichment—that enables comprehensive identification and quantification of peptides containing acetylated and succinylated lysine residues from a single sample containing as little as 1 mg mitochondria protein is described. Coupled with a label‐free, data‐independent acquisition (DIA), 2235 acetylated and 2173 succinylated peptides with the one‐pot method are identified and quantified and peak areas are shown to be highly correlated between the one‐pot and traditional single‐PTM enrichments. The ‘one‐pot’ method makes possible detection of multiple PTMs occurring on the same peptide, and it is shown that it can be used to make unique biological insights into PTM crosstalk. Compared to single‐PTM enrichments, the one‐pot workflow has equivalent reproducibility and enables direct assessment of PTM crosstalk from biological samples in less time from less tissue.  相似文献   

3.
A method for the selective enrichment of tryptophan-containing peptides from complex peptide mixtures such as protein digests is presented. It is based on the reversible reaction of tryptophan with malondialdehyde and trapping of the derivatized Trp-peptides on hydrazide beads via the free aldehyde group of the modified peptides. The peptides are subsequently recovered in their native form by specific cleavage reactions for further (mass spectrometric) analysis. The method was optimized and evaluated using a tryptic digest of a mixture of 10 model proteins, demonstrating a significant reduction in sample complexity while still allowing the identification of all proteins. The applicability of the tryptophan-specific enrichment procedure to complex biological samples is demonstrated for a total yeast cell lysate. Analysis of the processed fraction by 1D-LC-MS/MS confirms the specificity of the enrichment procedure, as more than 85% of the peptides recovered from the enrichment step contained tryptophan. The reduction in sample complexity also resulted in the identification of additional proteins in comparison to the untreated lysate.  相似文献   

4.
In the field of proteomics there is an apparent lack of reliable methodology for quantification of posttranslational modifications. Present study offers a novel post-digest ICPL quantification strategy directed towards characterization of phosphorylated and glycosylated proteins. The value of the method is demonstrated based on the comparison of two prostate related metastatic cell lines originating from two distinct metastasis sites (PC3 and LNCaP). The method consists of protein digestion, ICPL labeling, mixing of the samples, PTM enrichment and MS-analysis. Phosphorylated peptides were isolated using TiO2, whereas the enrichment of glycosylated peptides was performed using hydrazide based chemistry. Isolated PTM peptides were analyzed along with non enriched sample using 2D-(SCX-RP)-Nano-HPLC–MS/MS instrumentation. Taken together the novel ICPL labeling method offered a significant improvement of the number of identified (∼ 600 individual proteins) and quantified proteins (> 95%) in comparison to the classical ICPL method. The results were validated using alternative protein quantification strategies as well as label-free MS quantification method. On the biological level, the comparison of PC3 and LNCaP cells has shown specific modulation of proteins implicated in the fundamental process related to metastasis dissemination. Finally, a preliminary study involving clinically relevant autopsy cases reiterated the potential biological value of the discovered proteins.  相似文献   

5.
Tyrosine nitration is a low-abundance post-translational protein modification that requires appropriate enrichment techniques to enable proteomic analyses. We report a simple yet highly specific method to enrich nitropeptides by chemoprecipitation involving only two straightforward chemical modifications of the nitropeptides before capturing the obtained derivatives with a strategically designed solid-phase active ester reagent. Specifically, capping of the aliphatic amines in the peptides is done first by reductive methylation to preserve the charge state of peptides for electrospray ionization mass spectrometric analysis, followed by reduction of nitrotyrosines to the corresponding aminotyrosines. These peptides are then immobilized on the solid-phase active ester reagent, whereas other peptides carrying no free amino groups are separated from the immobilized species by thoroughly washing the beads from which the tagged peptide derivatives can easily be released by acid-catalyzed hydrolysis at room temperature. The benefits of selective enrichment from a matrix of unmodified peptides for liquid chromatography-tandem mass spectrometry are demonstrated on three synthetic nitropeptides that are nitrated fragments of biologically relevant proteins. Identification of several in vitro nitrated human plasma proteins, also implicated under various pathological processes, by database searches from the enriched and tagged tryptic nitropeptides is presented as a practical application. We also show that converting the nitro-group to the small 4-formylbenzoylamido tag does not significantly alter fragmentation properties upon collision-induced dissociation compared with those of the native nitropeptides, and at the same time this derivatization actually improves electron capture dissociation due to conversion of the electron-predator nitro-group to this novel tag.  相似文献   

6.
The detection of low abundance proteins in complex biological samples is still a challenge in proteomics. To circumvent this obstacle a number of strategies involving the targeting of subsets of proteins or peptides were developed.The following work describes a new approach to simplify peptide mixtures by enrichment of N-terminal cysteinyl peptides (and to some extent N-terminal threonine peptides). The strategy is based on the use of an isolation method, so-called covalent capture (CC), which relies on the formation of a covalent bond between an N-terminal free cysteine or N-terminal free threonine and an aldehyde fixed on a solid support. The CC is highly selective. It permits extensive washes of the resin for the elimination of non-specific moieties before the release of the captured peptides. The application of the CC to proteomics was evaluated on tryptic peptides of standard proteins and test protein mixtures. The procedure demonstrated a significant reduction in sample complexity, while allowing the identification of N-terminal cysteinyl peptides hidden in the non-fractionated samples.This new strategy provides an efficient tool to existing proteomics approaches to reduce sample complexity and potentially identify less abundance proteins.  相似文献   

7.
《Journal of Proteomics》2008,71(6):647-661
The detection of low abundance proteins in complex biological samples is still a challenge in proteomics. To circumvent this obstacle a number of strategies involving the targeting of subsets of proteins or peptides were developed.The following work describes a new approach to simplify peptide mixtures by enrichment of N-terminal cysteinyl peptides (and to some extent N-terminal threonine peptides). The strategy is based on the use of an isolation method, so-called covalent capture (CC), which relies on the formation of a covalent bond between an N-terminal free cysteine or N-terminal free threonine and an aldehyde fixed on a solid support. The CC is highly selective. It permits extensive washes of the resin for the elimination of non-specific moieties before the release of the captured peptides. The application of the CC to proteomics was evaluated on tryptic peptides of standard proteins and test protein mixtures. The procedure demonstrated a significant reduction in sample complexity, while allowing the identification of N-terminal cysteinyl peptides hidden in the non-fractionated samples.This new strategy provides an efficient tool to existing proteomics approaches to reduce sample complexity and potentially identify less abundance proteins.  相似文献   

8.
Yan F  Che FY  Nieves E  Weiss LM  Angeletti RH  Fiser A 《Proteomics》2011,11(20):4109-4115
MS analysis of cross-linked peptides can be used to probe protein contact sites in macromolecular complexes. We have developed a photo-cleavable cross-linker that enhances peptide enrichment, improving the signal-to-noise ratio of the cross-linked peptides in mass spectrometry analysis. This cross-linker utilizes nitro-benzyl alcohol group that can be cleaved by UV irradiation and is stable during the multiple washing steps used for peptide enrichment. The enrichment method utilizes a cross-linker that aids in eliminating contamination resulting from protein-based retrieval systems, and thus, facilitates the identification of cross-linked peptides. Homodimeric pilM protein from Pseudomonas aeruginosa 2192 (pilM) was investigated to test the specificity and experimental conditions. As predicted, the known pair of lysine side chains within 14?? was cross-linked. An unexpected cross-link involving the protein's amino terminus was also detected. This is consistent with the predicted mobility of the amino terminus that may bring the amino groups within 19?? of one another in solution. These technical improvements allow this method to be used for investigating protein-protein interactions in complex biological samples.  相似文献   

9.
O-GlcNAc is a widespread dynamic carbohydrate modification of cytosolic and nuclear proteins with features analogous to phosphorylation. O-GlcNAc acts critically in many cellular processes, including signal transduction, protein degradation, and regulation of gene expression. However, the study of its specific regulatory functions has been limited by difficulties in mapping sites of O-GlcNAc modification. We report methods for direct enrichment and identification of in vivo O-GlcNAc-modified peptides through lectin weak affinity chromatography (LWAC) and mass spectrometry. The effectiveness of this strategy on complex peptide mixtures was demonstrated through enrichment of 145 unique O-GlcNAc-modified peptides from a postsynaptic density preparation. 65 of these O-GlcNAc-modified peptides were sequenced and belonged to proteins with diverse functions in synaptic transmission. Beta-elimination/Michael addition, MS(3) on O-GlcNAc neutral loss ions, and electron capture dissociation were shown to facilitate analysis of O-GlcNAc-modified peptides/sites from lectin weak affinity chromatography enriched postsynaptic density samples. Bassoon and Piccolo, proteins critical to synapse assembly and vesicle docking, were extensively modified by O-GlcNAc. In some cases, O-GlcNAc was mapped to peptides previously identified as phosphorylated, indicating potential interplay between these modifications. Shared substrate amino acid context was apparent in subsets of O-GlcNAc-modified peptides, including "PVST" and a novel "TTA" motif (two hydroxyl-containing amino acids adjacent to an alanine). The results suggest specific roles for O-GlcNAc modification in synaptic transmission, establish a basis for site-specific regulatory studies, and provide methods that will facilitate O-GlcNAc proteome analysis across a wide variety of cells and tissues.  相似文献   

10.
Zhang G  Neubert TA 《Proteomics》2006,6(2):571-578
Identification of tyrosine phosphorylation by MS is challenging due to its low abundance in biological samples. Therefore, specific enrichment of tyrosine phosphorylated peptides prior to their analysis is highly desirable. The application of immunopurification of phosphotyrosine (pY) peptides using pY antibodies has been greatly limited by poor selectivity. In the present study, we have shown that the selectivity of pY peptide immunopurification can be dramatically improved by adding detergents to immunoprecipitation buffers. Optimum selectivity and sensitivity were achieved using an immunoprecipitation buffer containing n-octyl glucoside with a concentration above its critical micelle concentration (0.7%). The optimized method was used to identify in vivo tyrosine phosphorylation on proteins isolated from cell extract by anti-pY protein immunoprecipitation. After immunopurification, non-pY-containing peptides from protein digests were readily removed and pY peptides became the dominant peaks in MALDI quadrupole-TOF mass spectra. In addition, the signal intensities from pY-containing peptides were enhanced significantly after enrichment, allowing characterization of tyrosine phosphorylation sites with greater sensitivity.  相似文献   

11.
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The “trial and error” approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems.  相似文献   

12.
Chen H  Xu X  Yao N  Deng C  Yang P  Zhang X 《Proteomics》2008,8(14):2778-2784
In this study, novel C8-functionalized magnetic polymer microspheres were prepared by coating single submicron-sized magnetite particle with silica and subsequent modification with chloro (dimethyl) octylsilane. The resulting C8-functionalized magnetic silica (C8-f-M-S) microspheres exhibit well-defined magnetite-core-silica-shell structure and possess high content of magnetite, which endow them with high dispersibility and strong magnetic response. With their magnetic property, the synthesized C8-f-M-S microspheres provide a convenient and efficient way for enrichment of low-abundance peptides from tryptic protein digest and human serum. The enriched peptides/proteins were subjected for MALDI-TOF MS analysis and the enrichment efficiency was documented. In a word, the facile synthesis and efficient enrichment process of the novel C8-f-M-S microspheres make them promising candidates for isolation of peptides even in complex biological samples such as serum, plasma, and urine.  相似文献   

13.
Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation is often substoichiometric, and an enrichment procedure of phosphorylated peptides derived from phosphorylated proteins is a necessary prerequisite for the characterization of such peptides by modern mass spectrometric methods. We report a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented.  相似文献   

14.
The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation‐induced self‐assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI‐TOF‐MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.  相似文献   

15.
Wang C  Ye M  Han G  Chen R  Zhang M  Jiang X  Cheng K  Wang F  Zou H 《Proteomics》2011,11(17):3578-3581
Multiple residues with consensus sequence, i.e. motif, on proteins are closely related to protein function. However, there is no effective method for targeted analysis of such proteins. The challenge for analysis of these classes of proteins by MS is how to selectively enrich peptides containing consensus sequence from protein digest. Although enrichment of peptides containing one type of amino acid residue was successfully achieved by chemically labeling followed by chromatographic isolation, however, it is almost impossible to label and isolate signature peptides containing multiple residues with consensus sequence by chemical approach. Herein, we developed an enzymatic approach based on the specific recognition between enzyme and its substrates to enrich such peptides. This approach was realized by modification of a residue in the consensus sequence via enzyme that can recognize the sequence followed by the isolation of the modified peptides. cAMP-dependent protein kinase was used to validate this approach and 168 peptides containing consensus motif were identified with selectivity of 67.2%. Those peptides resulted in the identification of 88 proteins with consensus sequence from serum sample. As this motif-oriented peptide enrichment approach allows targeted analysis of a subset of proteins with consensus sequence, it will have broad application in biological studies.  相似文献   

16.
Protein O-GlcNAcylation regulates various biological processes, and is associated with several diseases. Therefore, the development of quantitative proteomics is important for understanding the mechanisms of O-GlcNAc-related diseases. We previously reported selective enrichment of O-GlcNAcylated peptides, which provided high-selectivity and effective release by a novel thiol-alkyne and thiol-disulfide exchange. Here, we describe a new approach using initial isobaric tag labeling for relative quantification followed by enrichment and β-elimination/Michael addition with dithiothreitol for identification of both proteins and modification sites. The approach was validated using model proteins and peptides. This novel strategy could be used for quantitative O-GlcNAcome of biological samples.  相似文献   

17.
M Blein-Nicolas  H Xu  D de Vienne  C Giraud  S Huet  M Zivy 《Proteomics》2012,12(18):2797-2801
Inferring protein abundances from peptide intensities is the key step in quantitative proteomics. The inference is necessarily more accurate when many peptides are taken into account for a given protein. Yet, the information brought by the peptides shared by different proteins is commonly discarded. We propose a statistical framework based on a hierarchical modeling to include that information. Our methodology, based on a simultaneous analysis of all the quantified peptides, handles the biological and technical errors as well as the peptide effect. In addition, we propose a practical implementation suitable for analyzing large data sets. Compared to a method based on the analysis of one protein at a time (that does not include shared peptides), our methodology proved to be far more reliable for estimating protein abundances and testing abundance changes. The source codes are available at http://pappso.inra.fr/bioinfo/all_p/.  相似文献   

18.
There is a great need for quantitative assays in measuring proteins. Traditional sandwich immunoassays, largely considered the gold standard in quantitation, are associated with a high cost, long lead time, and are fraught with drawbacks (e.g. heterophilic antibodies, autoantibody interference, ''hook-effect'').1 An alternative technique is affinity enrichment of peptides coupled with quantitative mass spectrometry, commonly referred to as SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Antibodies).2 In this technique, affinity enrichment of peptides with stable isotope dilution and detection by selected/multiple reaction monitoring mass spectrometry (SRM/MRM-MS) provides quantitative measurement of peptides as surrogates for their respective proteins. SRM/MRM-MS is well established for accurate quantitation of small molecules 3, 4 and more recently has been adapted to measure the concentrations of proteins in plasma and cell lysates.5-7 To achieve quantitation of proteins, these larger molecules are digested to component peptides using an enzyme such as trypsin. One or more selected peptides whose sequence is unique to the target protein in that species (i.e. "proteotypic" peptides) are then enriched from the sample using anti-peptide antibodies and measured as quantitative stoichiometric surrogates for protein concentration in the sample. Hence, coupled to stable isotope dilution (SID) methods (i.e. a spiked-in stable isotope labeled peptide standard), SRM/MRM can be used to measure concentrations of proteotypic peptides as surrogates for quantification of proteins in complex biological matrices. The assays have several advantages compared to traditional immunoassays. The reagents are relatively less expensive to generate, the specificity for the analyte is excellent, the assays can be highly multiplexed, enrichment can be performed from neat plasma (no depletion required), and the technique is amenable to a wide array of proteins or modifications of interest.8-13 In this video we demonstrate the basic protocol as adapted to a magnetic bead platform.  相似文献   

19.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

20.
The complete analysis of phosphoproteomes has been hampered by the lack of methods for efficient purification, detection, and characterization of phosphorylated peptides from complex biological samples. Despite several strategies for affinity enrichment of phosphorylated peptides prior to mass spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide, the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy, SIMAC (sequential elution from IMAC), for sequential separation of monophosphorylated peptides and multiply phosphorylated peptides from highly complex biological samples. This allows individual analysis of the two pools of phosphorylated peptides using mass spectrometric parameters differentially optimized for their unique properties. We compared the phosphoproteome identified from 120 mug of human mesenchymal stem cells using SIMAC and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a 3-fold increase in recovery of multiply phosphorylated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号