首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. The fatty acid composition of the ole-1 and ole-1 petite mutants of Saccharomyces cerevisiae was manipulated by growing the organism in the presence of defined supplements of Tween 80 or by allowing cells that had first been grown in the presence of Tween 80 to deplete their unsaturated fatty acids by sequent growth in the absence of Tween 80. 2. The transition temperature of Arrhenius plots of mitochondrial ATPase (adenosine triphosphatase) increases as the unsaturated fatty acid content is lowered. 3. Cells require larger amounts of unsaturated fatty acids to grow on ethanol at lower temperatures. 4. Cells that stop growing owing to unsaturated fatty acid depletion at low temperatures are induced to grow further by raising the temperature and this results in a further depletion of unsaturated acids. This is due to a higher rate, but not a greater efficiency, of mitochondrial ATP synthesis. 5. Arrhenius plots of the passive permeability of mitochondria to protons between 4 and 37 degrees C are linear. The rate and the Arrhenius activation energy of proton entry increase greatly as the unsaturated fatty acid content is lowered. 6. Unsaturated fatty acid depletion has the same effects on the proton permeability of ole-1 petite mitochondria, indicating that the mitochondrially synthesized subunits of the ATPase are not involved in the enhanced rates of proton entry. 7. The adenylate energy charge of depleted ole-1 cells is greatly decreased by growth on ethanol medium. 8. The adenylate energy charge of isolated mitochondria is also lowered by unsaturated fatty acid depletion. 9. The results confirm that unsaturated fatty acid depletion uncouples oxidative phosphorylation in yeast both in vivo and in vitro, and is a consequence of changes in the lipid part of the membrane.  相似文献   

3.
4.
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the QO site of complex III.  相似文献   

5.
  1. The lipid composition of a mutant ofSaccharomyces cerevisiae which cannot synthesize unsaturated fatty acid (UFA) can be extensively manipulated by growing the organism in the presence of added fatty acids.
  2. Growth of the mutant is supported by a wide range of unsaturated fatty acids including oleic, palmitoleic, petroselenic, 11-eicosaenoic, ricinoleic, arachidonic, clupanodonic, linoleic and linolenic acids; 9- and 10-hydroxystearic acids support growth less effectively, but erucic, nervonic, elaidic and saturated fatty acids (C8∶0?C20∶0)* are ineffective. All the fatty acids which support growth are incorporated into cell lipids, apparently without further metabolism.
  3. The effects of altered lipid composition on the energy metabolism of yeast cells were investigated. Cells containing less than approximately 20% of their fatty acids as UFA cannot grow on non-fermentable substrates, and their growth on glucose is restricted to that which can be supported by fermentation alone.
  4. UFA-depleted cells contain mitochondria which are apparently normal in morphology, furthermore they have normal levels of cytochromesa+a 3,b,c 1 andc and respire at normal rates. This suggests that the lesion in energy metabolism produced by UFA-depletion may be the loss of the ability of the mitochondria to couple respiration to phosphorylation.
  5. UFA-depleted cells incorporate added UFA into their cell lipids and subsequently regain the ability to grow on non-fermentable substrates, showing that the lesion in energy metabolism is fully reversible.
  相似文献   

6.
7.
1. Mitochondrial translation products of yeast Saccharomyces cerevisiae were separated according to charge as well as molecular weight by a highly resolving two dimensional electorphoretic technique (isoelectric focusing in the first dimension ana SDS-electrophoresis in the second dimension). 2. The major protein components (the oligomeric form of subunit 9 of mitochondrial ATPase, var 1, cytochrome oxidase subunits I, II and III, subunit 6 of mitochondrial ATPase and cytochrome b apoprotein) were identified either from their mobility in SDS-electrophoresis or by using mit- mutants defective in certain mitochondrially made polypeptides. 3. This method allowed the separation of subunit III of cytochrome oxidase and subunit 6 of mitochondrial ATPase which cannot be resolved by conventional SDS-polyacrylamide gel electrophoresis. 4. Subunit II of cytochrome oxiodase resolves in two spots of similar pI values and subunit 6 of mitochondrial ATPase resolves in two spots of similar molecular weight. In both cases the double spots disappear simultaneously following a single mutation in the coresponding structural gene. 5. Total mitochondrial proteins were also resolved two-dimensionally revealing over 100 components. The mitochondrial translation products, with the exception of subunit 9 of mitochondrial ATPase, could be easily recognized among the other mitochondrial proteins.  相似文献   

8.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

9.
  1. The lipid composition of mitochondria isolated from a fatty acid desaturase mutant ofSaccharomyces cerevisiae may be extensively manipulated by growing the organism on defined supplements of unsaturated fatty acid (UFA).
  2. The fatty acid composition of the mitochondrial lipids closely follows that of the whole cells from which the mitochondria are isolated. UFA-depleted mitochondria contain normal levels of sterols, neutral lipids and total phospholipids, but have much lower levels of phosphatidyl inositides.
  3. UFA-depleted mitochondria possess a full complement of cytochromes, oxidase both NAD-linked and flavoprotein-linked substrates at normal rates, and have levels of succinate and malate dehydrogenases similar to those of UFA-supplemented mitochondria. However, UFA-depletion has a marked effect on the ability of cytochromec to reactivate the NADH oxidase activity of cytochromec-depleted mitochondria.
  4. The efficiency of oxidative phosphorylation decreases progressively with the UFA content of the mitochondria, and oxidative phosphorylation is completely lost in mitochondria containing approximately 20% UFA.
  5. The incorporation of UFA into the lipids of UFA-depleted mitochondriain vivo results in a recoupling of oxidative phosphorylation. Recoupling is insensitive to both chloramphenicol and cycloheximide, indicating that all the proteins necessary for oxidative phosphorylation are present in UFA-depleted mitochondria, and that the less of oxidative phosphorylation is a purely lipid lesion.
  6. ATPase activity is apparently unaffected by UFA-depletion, but32Pi-ATP exchange activity is lost in mitochondria which have been extensively depleted in UFA.
  7. Valinomycin stimulates the respiration of UFA-supplemented mitochondria in media containing potassium, but has no effect on the respiration of UFA-depleted mitochondria, suggesting that active transport of potassium is lost as a result of UFA-depletion.
  相似文献   

10.
This paper describes the physical mapping of five antibiotic resistance markers on the mitochondrial genome of Saccharomyces cerevisiae. The physical separations between markers were derived from studies involving a series of stable spontaneous petite strains which were isolated and characterized for the loss or retention of combinations of the five resistance markers. DNA-DNA hybridization using 32P-labelled grande mitochondrial DNA was employed to determine the fraction of grande mitochondrial DNA sequences retained by each of the defined petite strains.One petite clone retaining four of the markers in a segment comprising 36% of the grande genome was then chosen as a reference petite. The sequence homology between the mitochondrial DNA of this petite and that of the other petites was measured by DNA-DNA hybridization. For each petite, the total length of its genome derived by hybridization with grande mitochondrial DNA and the fraction of the grande genome retained in common with the reference petite, together with the genetic markers retained in common, were used to position the DNA segment of each petite relative to the reference petite genome. At the same time the relative physical location of the five markers on a circular genome was established. On the basis of the grande mitochondrial genome being defined as 100 units of DNA, the positions of the markers were determined to bo as follows, measuring from one end of the reference petite genome. chloramphenicol (cap1) ~ 0 units erythromycin (ery1) 0 to 15 units oligomycin (oli1) 18 to 19 units mikamycin (mik1) 22 to 25 units paromomycin (par1) 61 to 73 unitsThe general problems of mapping mitochondrial genetic markers by hybridizations involving petite mitochondrial DNA are discussed. Two very important features of petite genomes which could invalidate the interpretation of DNA-DNA hybridization experiments between petite mitochondrial DNAs are the possible presence in the reference petite of differentially amplified DNA sequences, and/or “new” sequences which are not present in the parent grande genome. A general procedure, which overcomes errors of interpretation arising from these two features is described.  相似文献   

11.
12.
13.
1. The fatty acid composition of the membrane lipids of a fatty acid desaturase mutant of Saccharomyces cerevisiae was manipulated by growing the organism in a medium containing defined fatty acid supplements. 2. Mitochondria were obtained whose fatty acids contain between 20% and 80% unsaturated fatty acids. 3. Mitochondria with high proportions of unsaturated fatty acids in their lipids have coupled oxidative phosphorylation with normal P/O ratios, accumulate K(+) ions in the presence of valinomycin and an energy source, and eject protons in an energy-dependent fashion. 4. If the unsaturated fatty acid content of the mitochondrial fatty acids is lowered to 20%, the mitochondria simultaneously lose active cation transport and the ability to couple phosphorylation to respiration. 5. The loss of energy-linked reactions is accompanied by an increased passive permeability of the mitochondria to protons. 6. Free fatty acids uncouple oxidative phosphorylation in yeast mitochondria and the effect is reversed by bovine serum albumin. 7. The free fatty acid contents of yeast mitochondria are unaffected by depletion of unsaturated fatty acids, and free fatty acids are not responsible for the uncoupling of oxidative phosphorylation in organelles depleted in unsaturated fatty acids. 8. It is suggested that the loss of energy-linked reactions in yeast mitochondria that are depleted in unsaturated fatty acids is a consequence of the increased passive permeability to protons, and is caused by a change in the physical properties of the lipid phase of the inner mitochondrial membrane.  相似文献   

14.
15.
16.
We have investigated the extent to which the assembly of the cytoplasmically synthesized subunits of the H+-ATPase can proceed in a mtDNA-less (rho°) strain of yeast, which is not capable of mitochondrial protein synthesis. Three of the membrane sector proteins of the yeast H+-ATPase are synthesized in the mitochondria, and it is important to determine whether the presence of these subunits is essential for the assembly of the imported subunits to the inner mitochondrial membrane. A monoclonal antibody against the cytoplasmically synthesized -subunit of the H+-ATPase was used to immunoprecipitate the assembled subunits of the enzyme complex. Our results indicate that the imported subunits of the H+-ATPase can be assembled in this mutant, into a defective complex which could be shown to be associated with the mitochondrial membrane by the analysis of the Arrhenius kinetics of the mutant mitochondrial ATPase activity.This paper is No. 61 in the seriesBiogenesis of Mitochondria. For paper No. 60, see Novitskiet al. (1984).  相似文献   

17.
18.
Total yeast mitochondrial RNA was shown to possess messenger RNA activity when injected into oocytes of the frog Xenopus laevis. The specific polypeptides formed were precipitated by mitochondrial antisera. A comparison was made of the molecular weights of the proteins obtained form this system with those made by mitochondria in vivo in the presence of cycloheximide. No RNA containing poly(A) sequences was detected in yeast mitochondria.  相似文献   

19.
20.
1. Parameters of ATP uptake by fully functional Saccharomyces cerevisiae mitochondria, including kinetic constants, binding constants and sensitivity to atractylate, closely resemble those of mammalian mitochondria. Scatchard plots of atractylate-sensitive adenine nucleotide binding indicate two distinct sites of high affinity (binding constant, K(D)'=1mum), and low affinity (binding constant, K(D)'=20mum) in the ratio 1:3. Uptake has high Arrhenius activation energies (+35 and +57kJ/mol), above and below a transition temperature of 11 degrees C. Atractylate-insensitive ATP uptake is apparently not saturable and has a low Arrhenius activation energy (6kJ/mol), suggesting a non-specific binding process. 2. Kinetic and binding constants for ATP uptake are not significantly changed in catabolite-repressed or anaerobic mitochondrial structures. 3. Inhibition of the mitochondrial protein-synthesizing system by growth of cells in the presence of erythromycin, or loss of mitochondrial DNA by mutation profoundly alters the adenine nucleotide transporter. ATP uptake becomes completely insensitive to atractylate, and the high-affinity binding site is lost. However, the adenine nucleotide transporter does not appear to be totally eliminated, as a moderate amount of saturable low-affinity ATP binding remains. 4. It is concluded that products of the mitochondrial protein-synthesizing system, probably coded by mitochondrial DNA, are required for the normal function of the adenine nucleotide transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号