首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.  相似文献   

2.
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.  相似文献   

3.
Hibbert CS  Mirro J  Rein A 《Journal of virology》2004,78(20):10927-10938
Prior work by others has shown that insertion of psi (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3' untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV psi or with psi sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the psi region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Psi(+) mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops.  相似文献   

4.
5.
We investigated the role of 5' untranslated leader sequences of simian immunodeficiency virus (SIV(mac239)) in RNA encapsidation and protein expression. A series of progressively longer deletion mutants was constructed with a common endpoint six nucleotides upstream of the gag initiation codon and another endpoint at the 3' end of the primer binding site (PBS). We found that efficient intracellular Gag-Pol protein accumulation required the region between the PBS and splice donor (SD) site. Marked reduction of genomic RNA packaging was observed with all the deletion mutants that involved sequences at both the 5' and at the 3' ends of the major SD site, and increased nonspecific RNA incorporation could be detected in these mutants. RNA encapsidation was affected only modestly by a deletion of 54 nucleotides at the 3' end of the SD site when the mutant construct pDelta54 was transfected alone. In contrast, the amount of pDelta54 genomic RNA incorporated into particles was reduced more than 10-fold when this mutant was cotransfected with a construct specifying an RNA molecule with a wild-type packaging signal. Therefore, we conclude that the 175 nucleotides located 5' of the gag initiation codon are critical for efficient and selective incorporation of genomic RNA into virions. This location of the SIV Psi element provides the means for efficient discrimination between viral genomic and spliced RNAs.  相似文献   

6.
7.
8.
The genome of Moloney murine leukemia virus(MoMuLV) is composed of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Recently it was shown that in vitro generated MuLV RNA formed dimeric molecules and that dimerization sequences are located within the Psi encapsidation domain between positions 215 and 420. Conditions for the spontaneous dimerization of a MuLV RNA fragment encompassing the Psi domain have been investigated. The rate of spontaneous MuLV RNA dimer formation is dependent upon RNA, NaCl and MgCl2 concentrations as well as temperature. Thermal denaturation of in vitro generated dimer RNA of 350 nt, from positions 215 to 565, gave a Tm of about 58 degrees C in 100 mM NaCl. This Tm value is very close to that found for RNA corresponding to the 5' 755 nt and to the genomic 70 S RNA isolated from virions. According to thrermodynamic parameters derived from denaturation curves of MuLV dimer RNA generated in vitro, the dimer linkage structure probably involves short sequences.  相似文献   

9.
Encapsidation of retroviral RNA involves specific interactions between viral proteins and cis-acting genomic RNA sequences. Human immunodeficiency virus type 1 (HIV-1) RNA encapsidation determinants appear to be more complex and dispersed than those of murine retroviruses. Feline lentiviral (feline immunodeficiency virus [FIV]) encapsidation has not been studied. To gain comparative insight into lentiviral encapsidation and to optimize FIV-based vectors, we used RNase protection assays of cellular and virion RNAs to determine packaging efficiencies of FIV deletion mutants, and we studied replicative phenotypes of mutant viruses. Unlike the case for other mammalian retroviruses, the sequences between the major splice donor (MSD) and the start codon of gag contribute negligibly to FIV encapsidation. Moreover, molecular clones having deletions in this region were replication competent. In contrast, sequences upstream of the MSD were important for encapsidation, and deletion of the U5 element markedly reduced genomic RNA packaging. The contribution of gag sequences to packaging was systematically investigated with subgenomic FIV vectors containing variable portions of the gag open reading frame, with all virion proteins supplied in trans. When no gag sequence was present, packaging was abolished and marker gene transduction was absent. Inclusion of the first 144 nucleotides (nt) of gag increased vector encapsidation to detectable levels, while inclusion of the first 311 nt increased it to nearly wild-type levels and resulted in high-titer FIV vectors. However, the identified proximal gag sequence is necessary but not sufficient, since viral mRNAs that contain all coding regions, with or without as much as 119 nt of adjacent upstream 5' leader, were excluded from encapsidation. The results identify a mechanism whereby FIV can encapsidate its genomic mRNA in preference to subgenomic mRNAs.  相似文献   

10.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

11.
12.
13.
Selective encapsidation of avian sarcoma-leukosis virus genomic RNA within virions requires recognition of a cis-acting signal (termed psi) located in the 5' leader of the RNA between the primer binding site and the splice donor site. Computer analyses indicate the potential for numerous secondary structure interactions within this region, including alternative conformations with similar free energy levels. We have constructed mutations designed to disrupt and restore potential secondary structure interactions within psi to investigate the role of these structures in RNA packaging. To test for the ability of psi mutants to package a heterologous reporter gene into virions, chimeric constructs bearing avian sarcoma virus 5' sequences fused to lacZ were transiently cotransfected with a nonpackageable helper construct into chicken embryo fibroblasts. lacZ virions produced from cotransfected cells were used to infect new cultures of chicken embryo fibroblasts, and then an in situ assay for individual cells expressing lacZ was done. Results obtained with this assay were confirmed in direct analyses of isolated virion RNA by RNase protection assays. Two mutations, predicted to disrupt a potential stem structure forming between elements located at nucleotides 160 to 167 and 227 to 234, severely inhibited packaging when either element was mutated. A construct in which these mutations were combined to restore potential base pairing between the two elements displayed a partially restored packaging phenotype. These results strongly suggest that the structure, referred to as the O3 stem, is required for efficient encapsidation of avian sarcoma virus RNA. Site-directed mutagenesis of additional sequence elements located in the O3 loop reduced packaging as measured by the indirect assay, suggesting that these sequences may also be components of the encapsidation signal. The possible implications of the O3 stem structure with regard to translation of avian sarcoma-leukosis virus short upstream open reading frames are discussed.  相似文献   

14.
15.
16.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

17.
18.
Reverse genetics for crimean-congo hemorrhagic fever virus   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

19.
20.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号