首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest fragmentation can lead to extinctions of some species at local levels and is eroding bird diversity at an increasing rate. While there is information on the distribution of forest bird species in most of the Eastern Arc Mountain forests, some forests, particularly the smaller fragments, have not been adequately surveyed. Using mist netting we surveyed avifauna in some of the poorly known forests (12.5–25 ha) located 320–1 300 m above sea level in the Uluguru Mountains in order to address their conservation importance. Proportions of seasonal altitudinal migrants were significantly higher in these lower-altitude forests during the cold season than the hot season. The results suggest that these forests support bird species of conservation concern, most of which are forest dependent and some of which make seasonal movements between high-altitude montane forests and lowland/ foothill forests. These forests are important cold-season habitat of altitudinal migrants and further fragmentation should be halted as a matter of regional and global priority.  相似文献   

2.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

3.
The threatened forest habitats of the tropical Andes are reportedly being modified and destroyed 30% faster than their lowland tropical counterparts, but impacts on the hyper-diverse resident avifauna have received little systematic study. We present a baseline analysis of the effects of habitat modification on birds in a lower montane forest landscape in Ecuador, comparing avian community composition in landscape elements subjected to different levels of human modification: primary forest, secondary forest, edge habitat and agricultural land. We use data from a point count survey of 300 counts at 150 sites to test whether community composition and density of birds with different reported habitat preferences and foraging strategies change among landscape elements. Species richness and diversity were lowest in agricultural land, but on some measures, equally low in primary forest. Richness and diversity peaked in secondary forest and edge habitat, but ordination and density analysis revealed clear differences in their species composition. While secondary forest contained mostly forest-preferring species, edge habitat harboured a mix of forest and open-land birds. There was a clearly structured gradient in species composition across landscape elements, with densities of habitat specialists, foraging guilds and families varying considerably from primary forest to agricultural land. Agricultural land was characterised by an assemblage of widespread, abundant species very different from that in core forest habitats. As such, while the majority of montane forest birds appear resilient to a certain level of habitat modification, they cannot persist, and are displaced, where forest has been cleared outright. We argue that, for Andean montane forests, preservation of mature secondary forest offers flexibility in supplementing preserved primary forest areas to provide sufficient habitat for the persistence of this incredibly diverse but severely threatened bird community.  相似文献   

4.
Although an increasing number of studies have shown that diverse, multi-strata agroforestry systems can contribute to the conservation of tropical biodiversity, there is still debate about how the biodiversity within agroforestry systems compares to that of intact forest and alternative land uses. In order to assess the relative importance of agroforestry systems for biodiversity conservation, we characterized bat and bird assemblages occurring in forests, two types of agroforestry systems (cacao and banana) and plantain monocultures in the indigenous reserves of Talamanca, Costa Rica. A total of 2,678 bats of 45 species were captured, and 3,056 birds of 224 species were observed. Agroforestry systems maintained bat assemblages that were as (or more) species-rich, abundant and diverse as forests, had the same basic suite of dominant species, but contained more nectarivorous bats than forests. Agroforestry systems also contained bird assemblages that were as abundant, species-rich and diverse as forests; however the species composition of these assemblages was highly modified, with fewer forest dependent species, more open area species and different dominant species. The plantain monocultures had highly modified and depauperate assemblages of both birds and bats. Across land uses, bird diversity and species richness were more closely correlated with the structural and floristic characteristics than were bats, suggesting potential taxon-specific responses to different land uses. Our results indicate that diverse cacao and banana agroforestry systems contribute to conservation efforts by serving as habitats to high numbers of bird and bat species, including some, but not all, forest-dependent species and species of known conservation concern. However, because the animal assemblages in agroforestry systems differ from those in forests, the maintenance of forests within the agricultural landscape is critical for conserving intact assemblages at the landscape level.  相似文献   

5.
Larison, B., Smith, T.B., Fotso, R. & McNiven, D. 2000. Comparative avian biodiversity of five mountains in northem Cameroon and Bioko. Ostrich 71 (1 & 2): 269–276.

Endemism among birds is widespread in the montane forests of western Cameroon and the Gulf of Guinea. The region includes some of the rarest and most threatened species in Africa. We conducted avian surveys of four previously unsurveyed montane sites in northern Cameroon, including Mt. Ngang-Ha, Hoséré Vokré, Tchabal Gandaba, and Tchabal Mbabo, as well as the northern slope of Caldera de Luba on the island of Bioko, Equatorial Guinea. We report here on avian species richness and relative abundance, and evaluate the conservation potential of each site based on avifaunal richness. The montane forest on both Tchabal Mbabo and Caldera de Luba is extensive, while on the other mountains, the vegetation is not characteristic of montane forest, and consists primarily of small gallery forests embedded in savanna. Tchabal Mbabo and Caldera de Luba had the greatest species richness and abundance of montane birds, while Tchabal Gandaba had the greatest overall avian species richness and abundance. Few montane species were noted on Mt. Ngang-Ha and Hosere Vokre, and avian abundance was quite low on both mountains. Of the mountains surveyed, Tchabal Mbabo and Caldera de Luba exhibit the greatest potential for conservation based on extent of montane forest, and montane species richness and abundance.  相似文献   

6.
西双版纳勐宋轮歇演替区鸟类多样性及食果鸟研究   总被引:10,自引:1,他引:9  
结合退耕还林、生态保护和山区经济持续发展的需要,在西双版纳勐宋轮歇休闲自然演替林地、传统保护使林地和原始自然林地等3类8种生境中,采用样方法并辅以挂网捕鸟法,研究了鸟类的多样性、食果鸟类及其与森林动态的关系。结果表明:①随着轮歇休闲时间递增和植被层次增加,鸟类多样性增加,鸟类群落逐渐复杂化;②鸟类多样性H、Hmax和J等参数变化情况在干季和雨季类似;③食果传播植物种子的鸟类沟通了各林地之间的联系,它们的活动对植被的演替和扩展至关重要。讨论分析认为,鸟类多样性与生境植被结构相互作用,协同发展;在退耕还林工作中要重视食果类及其生态功能的作用,注意保护原始森林和鸟类物种,利用和促进食果鸟类的自然生态功能。  相似文献   

7.
Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity.  相似文献   

8.
Burgess, N.D. & Mlingwa, C.O.F. 2000. Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich 71 (1 & 2): 184–190.

In this paper we assess the evidence for altitudinal movements of forest birds from the montane forests of the Eastern Arc mountains of East Africa to nearby lowland forest patches. For 34 montane species, including all the Eastern Arc endemics except Banded Green Sunbird Anthreptes rubritorques there is no evidence that they undertake seasonal movements to lower altitudes. An additional 26 montane species, of somewhat wider distribution, have been recorded at low (<500 m) altitudes during the cold/dry season (June to September). Most records of these montane birds at lower altitudes are from sites adjoining montane forest areas, although a few records are from lowland coastal forests at 100–240 km distance from montane areas. Only five of the 26 species (White-chested Alethe Alethe fulleborni, White-starred Forest Robin Pogonocichla stellata, Orange Ground Thrush Zoothera gurneyi, Evergreen Forest Warbler Bradypterus mariae and Barred Long-tailed Cuckoo Cercococcyx montanus) are regularly and commonly reported in the lowlands. They are also found in the lowlands in small numbers during the warm/wet season (October to February), when they may breed. The abundance of at least four, and probably more, of the forest birds with a more widespread distribution in the lowland and montane forests of East Africa declines greatly at high altitudes from the onset of the cold/wet season (February) and only increases again at the start of the warm/wet season (September). It is not known how far these species move as they cannot be easily separated from resident populations in lowland forests, and there are no ringing recoveries in different forests. Altitudinal migration of a proportion of the Eastern Arc avifauna is the most likely explanation for available data, although source-sink metapopulation theories may be helpful to explain the distributions of some species. As the movement of forest birds from the Eastern Arc to the lowland forests does not involve the rare endemics, they are of lower conservation concern, but the presence of montane and lowland forest may be important for the long-term survival of some more widely distributed forest species.  相似文献   

9.
Agricultural conversion of tropical forests is a major driver of biodiversity loss. Slowing rates of deforestation is a conservation priority, but it is also useful to consider how species diversity is retained across the agricultural matrix. Here, we assess how bird diversity varies in relation to land use in the Taita Hills, Kenya. We used point counts to survey birds along a land‐use gradient that included primary forest, secondary vegetation, agroforest, timber plantation and cropland. We found that the agricultural matrix supports an abundant and diverse bird community with high levels of species turnover, but that forest specialists are confined predominantly to primary forest, with the matrix dominated by forest visitors. Ordination analyses showed that representation of forest specialists decreases with distance from primary forest. With the exception of forest generalists, bird abundance and diversity are lowest in timber plantations. Contrary to expectation, we found feeding guilds at similar abundances in all land‐use types. We conclude that whilst the agricultural matrix, and agroforest in particular, makes a strong contribution to observed bird diversity at the landscape scale, intact primary forest is essential for maintaining this diversity, especially amongst species of conservation concern.  相似文献   

10.
Species extinctions caused by the destruction and degradation of tropical primary forest may be at least partially mitigated by the expansion of regenerating secondary forest. However, the conservation value of secondary forest remains controversial, and potentially underestimated, since most previous studies have focused on young, single‐aged, or isolated stands. Here, we use point‐count surveys to compare tropical forest bird communities in 20–120‐year‐old secondary forest with primary forest stands in central Panama, with varying connectivity between secondary forest sites and extensive primary forest. We found that species richness and other metrics of ecological diversity, as well as the combined population density of all birds, reached a peak in younger (20‐year‐old) secondary forests and appeared to decline in older secondary forest stands. This counter‐intuitive result can be explained by the greater connectivity between younger secondary forests and extensive primary forests at our study site, compared with older secondary forests that are either (a) more isolated or (b) connected to primary forests that are themselves small and isolated. Our results suggest that connectivity with extensive primary forest is a more important determinant of avian species richness and community structure than forest age, and highlight the vital contribution secondary forests can make in conserving tropical bird diversity, so long as extensive primary habitats are adjacent and spatially connected.Abstract in Spanish is available with online material.  相似文献   

11.
In tropical and subtropical forests there is limited information about how to integrate sustainable timber management with the conservation of biodiversity. We examined the effect of selective logging on the bird community to help develop management guidelines to assure the conservation of biodiversity in forests managed for timber production. The study design consisted of control and harvested plots in piedmont and cloud forests of the subtropical montane forests of the Andes in northwestern Argentina. We conducted bird point-count surveys combined with distance estimation. Breeding season bird community composition was more similar between control and logged forest in both the cloud forest and piedmont, than between the two elevations, probably because Neotropical bird communities change dramatically along elevational gradients. Within each elevation zone, community composition changed significantly between harvested and control forests. Both between and within each elevation zone no significant differences in bird density were detected. Similarly, when we analyzed bird density according to diet guilds no general pattern could be extracted. However, we found a significantly greater density of cavity nesters and lower of non-cavity nesters in control plots, probably because most trees that can develop suitable cavities were extracted in logged plots and these plots had a greater structural diversity enabling more nesting resources. Grouping species according to their nesting habitat requirements has rarely been used in the neotropics and other tropical and subtropical forests, but focusing management attention on cavity nesters might address the most sensitive portion of the avian community as well as other species dependent on trees likely to hold cavities.  相似文献   

12.
Kara L. Lefevre  F. Helen Rodd 《Oikos》2009,118(9):1405-1415
Fruit consumption by birds is an important ecological interaction that contributes to seed dispersal in tropical rainforests. In this field experiment, we asked whether moderate human disturbance alters patterns of avian frugivory: we measured fruit removal by birds in the lower montane rainforest of Tobago, West Indies, using artificial infructescences made with natural fruits from two common woody plants of the forest understory (Psychotria spp., Rubiaceae). Displays were mounted simultaneously in three forest habitats chosen to represent a gradient of increasing habitat disturbance (primary, intermediate and disturbed), caused by subsistence land use adjacent to a protected forest reserve. We measured the numbers of fruits removed and the effect of fruit position on the likelihood of removal, along with the abundances of all fruits and fruit‐eating birds at the study sites. Fruit removal was highly variable and there was not a significant difference in removal rate among forest habitats; however, the trend was for higher rates of removal from displays in primary forest. Canopy cover, natural fruit availability, and frugivore abundance were not good predictors of fruit removal. Birds preferred more accessible fruits (those proximal to the perch) in all habitats, but in disturbed forest, there was a tendency for distal fruits to be chosen more frequently than in the other forest types. One possible explanation for this pattern is that birds in disturbed forests were larger than those in other habitats, and hence were better able to reach the distal fruits. Coupled with differences in bird community composition among the forest types, this suggests that different suites of birds were removing fruit in primary versus disturbed forest. As frugivore species have different effectiveness as seed dispersers, the among‐habitat differences in fruit removal patterns that we observed could have important implications for plant species experiencing disturbance; these possible implications include altered amounts of seed deposition and seedling recruitment in Tobago's tropical rainforest.  相似文献   

13.
Southeast Asia is a hotspot of imperilled biodiversity, owing to extensive logging and forest conversion to oil palm agriculture. The degraded forests that remain after multiple rounds of intensive logging are often assumed to be of little conservation value; consequently, there has been no concerted effort to prevent them from being converted to oil palm. However, no study has quantified the biodiversity of repeatedly logged forests. We compare the species richness and composition of birds and dung beetles within unlogged (primary), once-logged and twice-logged forests in Sabah, Borneo. Logging had little effect on the overall richness of birds. Dung beetle richness declined following once-logging but did not decline further after twice-logging. The species composition of bird and dung beetle communities was altered, particularly after the second logging rotation, but globally imperilled bird species (IUCN Red List) did not decline further after twice-logging. Remarkably, over 75 per cent of bird and dung beetle species found in unlogged forest persisted within twice-logged forest. Although twice-logged forests have less biological value than primary and once-logged forests, they clearly provide important habitat for numerous bird and dung beetle species. Preventing these degraded forests from being converted to oil palm should be a priority of policy-makers and conservationists.  相似文献   

14.
Tropical forests worldwide are being fragmented at a rapid rate, causing a tremendous loss of biodiversity. Determining the impacts of forest disturbance and fragmentation on tropical biotas is therefore a central goal of conservation biology. We focused on bird communities in the interior (>100 m from forest edge) of forest fragments (300, 600, and 1200 ha) in the lowlands of Papua New Guinea and compared them with those in continuous forest. We surveyed bird communities using point counts, mist‐netting, and random walks, and measured habitat and microclimate characteristics at each site. We also surveyed leaf‐dwelling arthropods, butterflies, and ants, and obtained diet samples from birds to examine food availability and food preferences. We recorded significantly fewer bird species per point in the 300‐ha forest fragment than in other study sites. Overall, we recorded 80, 84, and 88 species, respectively, in forest fragments, and 102 in continuous forest. Frugivores (especially large frugivores) and insectivores had lower species richness in forest fragments than continuous forest. Our results did not support the food scarcity hypothesis, that is, the decline of insectivorous birds in forest fragments is caused by an impoverished invertebrate prey base. We also found no significant differences among forest fragments and continuous forest in microclimates of forest interiors. Rather, we found that microhabitats preferred by sensitive birds (i.e., 30% of species with the strongest preferences for continuous forest) were less common in forest fragments (19%–31% of points) than in continuous forest (86% of points). Our results suggest that changes in microhabitats may make forest fragments unsuitable for sensitive species. However, limited dispersal capabilities could also make some species of birds less likely to disperse and occupy fragments. In addition, impoverished food resources, size of the forest fragment, or hunting pressure could contribute to the absence of large frugivorous birds in forest fragments. The forest fragments in our study, preserved as village‐based protected areas, were not large enough to sustain the bird communities found in continuous forest. However, because these fragments still contained numerous bird species, preservation of such areas can be an important component of management strategies to conserve rainforests and birds in Papua New Guinea.  相似文献   

15.
Declines in bird populations are an important issue facing conservationists. Although studies have documented bird declines in a variety of lowland habitats, montane habitats are generally under represented in these investigations. Nevertheless, montane habitats are vulnerable because of their restricted geographic distribution as well as their exposure to environmental stressors such as atmospheric deposition and climate change. We surveyed birds at 768 points on 42 transects in montane spruce-fir forests the White Mountains of New Hampshire from 1993–2003. We detected 17,479 individuals of 73 species during this period, of which 10 were abundant enough for analyses. Of these 10 species, three exhibited significant population declines during the survey period: Yellow-bellied Flycatcher (Empidonax flaviventris), Bicknell’s Thrush (Catharus bicknelli) and Magnolia Warbler (Dendroica magnolia). Two of these species (Yellow-bellied Flycatcher and Bicknell’s Thrush) are considered ecological indicator species for montane spruce-fir forest. Declines in these species are an indication that recent concern on the part of conservationists about montane spruce-fir forest and the birds that inhabit them are justified. Our observation that these trends were not reflected in the National Breeding Bird Survey (BBS) analyses, and that one high priority species, the Bicknell’s Thrush, did not occur on BBS routes in New Hampshire during the survey period, argues for the importance of continued efforts to monitor these habitats.  相似文献   

16.
Ntiamoa-Baidu, Y., Owusu, E.H., Asamoah, S. & Owusu-Boateng, K. 2000. Distribution and abundance of forest birds in Ghana. Ostrich 71 (1 & 2): 262–268.

Forest reserves within the Ghanaian rain forest have been classified into categories (Condition I-VI) on the basis of their botanical importance and status of the vegetation. We present data on the distribution and abundance of avifauna of 28 Condition II and III forest reserves in southern Ghana based on line transect counts and mist-net captures. A total of 227 species were recorded for all the sites; species records for individual sites ranged from 78–119. The dominant groups in the overall survey were Muscicapidae (represented by 40 species), Pcynonotidae (21) and Cuculidae (12). The most abundant bird species in the Ghanaian forests were Yellow-whiskered Greenbul, Green Hylia, Green Pigeon and Olive Sunbird. Species encounter rates ranged from 16.7 to 50.7 species per km with individual bird encounter rates of 27.9 to 172.0 birds per km. Capture rates in mist-nets ranged from 1.2 to 3.9 birds per 100 metre net-hr (mnh). A total of 183 species were recorded in Condition II forest as compared with 167 in Condition III forests. The effects of forest condition and vegetation types on the total number of species recorded were, however, not statistically significant. The Similarity Index for bird communities within Condition II and III forests was 0.72. Bird species composition in the two forest types also differed: e.g., seven primary forest species, as well as 40% of the species associated with primary and matured secondary forest which were recorded in Condition II forests, were absent from Condition III forests. Bird communities of Moist Evergreen, Upland Evergreen and Moist semi-Deciduous were more similar than communities in the Wet Evergreen forest type. The implication of the results for conservation of the Ghana's forests is discussed.  相似文献   

17.
Although selectively logged tropical forests have high bird species richness, it is known that their species composition is substantially changed when compared with intact forests. Thus, we need to improve the understanding on how functional trait diversity of birds is affected in this habitat type in order to support the development of more effective conservation actions to maintain functional roles and community stability. Here, we evaluate traits responses to variations in forest vegetation integrity and how the pattern of niche occupancy is affected by this increase in species richness. We then evaluated the effects of vegetation integrity in the Atlantic rainforest on range of trait space occupied, niche packing, and trait composition in local bird communities. We also evaluate the mechanisms driving niche expansion and packing using null models. Our results show that trait composition changes in communities: (1) lower vegetation integrity increases foraging in understory and consumption of grains and ectothermic vertebrates by birds; (2) higher vegetation integrity drives higher and wider beaks and increase foraging for invertebrates in canopy. We also found that lower vegetation integrity not only is associated with the increase of species richness, but also with both expansion and packing of niche space occupied by the community. However, only niche packing had predominantly smaller values than expected by chance, indicating a strong effect of environmental filters on niche occupancy density. Although bird assemblages in more intact vegetations have lower species richness, they have greater functional distance between bird species suggesting greater stability, with a low probability of local extinctions due to a lower intensity of interspecific competition. This demonstrates that isolated assessments of species richness are potentially illusory and can lead to unsuccessful conservation measures, such as proposing selective logging in primary forests based on the supposed benefit of increased bird species richness in vegetations less intact. Furthermore, the functional composition tends to change with changes in vegetation integrity degree, thus altering the functional role provided by communities. Consequently, forests with high vegetation integrity status should be maintained, despite the lower species richness.  相似文献   

18.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

19.
Aim To describe variation in forest bird communities with altitude and latitude. Location Eastern Madagascar. Methods Extraction of data from forest bird inventories conducted in eastern Madagascar. Results There is a strong decline in species richness with altitude, above about 1300 m. Below this altitude, species richness is about constant or declines slightly. Seventy-eight percent of species occurring regularly in forest are absent from at least one of low, mid-altitude or high altitude forest. Of eighty-seven species occurring regularly in forest, only four or possibly five have latitudinally limited distributions, over a latitudinal range of over 1200 km. Three or possibly four are limited to the northern two-thirds, and one appears to be at least much more common in the southern half. Main conclusions Eastern Malagasy rain forest birds show previously unanalysed variation in altitudinal distribution. There is much less latitudinal variation. Species currently considered threatened are concentrated in the lowland and high-altitude zones. This may be at least partly due to lack of survey effort giving the impression that these species are rare, but lowland forests at least are under great human pressure. Bird conservation initiatives would probably have most effect if targeted at lowland east Malagasy rain forest.  相似文献   

20.
Large‐scale multi‐species data on population changes of alpine or arctic species are largely lacking. At the same time, climate change has been argued to cause poleward and uphill range shifts and the concomitant predicted loss of habitat may have drastic effects on alpine and arctic species. Here we present a multi‐national bird indicator for the Fennoscandian mountain range in northern Europe (Finland, Sweden and Norway), based on 14 common species of montane tundra and subalpine birch forest. The data were collected at 262 alpine survey plots, mainly as a part of geographically representative national breeding bird monitoring schemes. The area sampled covers around 1/4 million km2, spanning 10 degrees of latitude and 1600 km in a northeast–southwest direction. During 2002–2012, nine of the 14 bird species declined significantly in numbers, in parallel to higher summer temperatures and precipitation during this period compared to the preceding 40 yr. The population trends were largely parallel in the three countries and similar among montane tundra and subalpine birch forest species. Long‐distance migrants declined less on average than residents and short‐distance migrants. Some potential causes of the current decline of alpine birds are discussed, but since montane bird population sizes may show strong natural annual variation due to several factors, longer time series are needed to verify the observed population trends. The present Fennoscandian monitoring systems, which from 2010 onwards include more than 400 montane survey plots, have the capacity to deliver a robust bird indicator in the climate‐sensitive mountainous regions of northernmost Europe for conservation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号