首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zhu Y  Chen L  Kong F 《Carbohydrate research》2002,337(3):207-215
A highly concise and effective synthesis of the mannose octasaccharide of the N-linked glycan in the adhesion domain of human CD2 was achieved via TMSOTf-promoted selective 6-glycosylation of a trisaccharide 4,6-diol acceptor with a pentasaccharide donor, followed by deprotection. The pentasaccharide was constructed by selective 3,6-diglycosylation of 1,2-O-ethylidene-beta-D-mannopyranose with 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, while the trisaccharide was obtained by selective 3-O-glycosylation of allyl 4,6-O-benzylidene-alpha-D-mannopyranoside with the same disaccharide trichloroacetimidate, followed by debenzylidenation. The mannose hexasaccharide antigenic factor 13b was synthesized by condensation of a trisaccharide donor, 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, with a trisaccharide acceptor, methyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside, followed by deprotection.  相似文献   

2.
The synthesis of oligosaccharide fragments of the O-specific polysaccharide of Vibrio cholerae O139 containing a 4,6-cyclic phosphate galactose residue linked to GlcNAc is described. 8-Azido-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl-(1-->3)-2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranoside, obtained by condensation of 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide and 8-azido-3,6-dioxaoctyl 2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranoside, was converted to 8-azido-3,6-dioxaoctyl 3-O-benzyl-beta-D-galactopyranosyl-(1-->3)-2-acetamido-6-O-benzyl-2-deoxy-beta-D-glucopyranoside (6) by reductive opening of the acetal, followed by deacetylation and selective benzylation. Phosphorylation of 6 furnished two isomeric 4,6-cyclic 2,2,2-trichloroethyl phosphates. Glycosylation of the (S)-phosphate with 2,4-di-O-benzyl-3,6-dideoxy-alpha-L-xylo-hexopyranosyl bromide under halide-assisted conditions gave the desired tetrasaccharide, together with a trisaccharide. Global deprotection and reduction of the azide to an amine was effected by catalytic hydrogenation/hydrogenolysis to give the deprotected tetrasaccharide, which is functionalized for conjugation.  相似文献   

3.
We describe the synthesis of some 3-tert-butyl-4-hydroxyphenyl D-glycopyranosides by reaction of tert-butylhydroquinone with beta-D-pentaacetyl-glucose, beta-D-pentaacetyl-galactose, 2-acetamido- and 3,4,6-tri-O-acetyl-2-butanamido-2-deoxy-beta-D-glucopyranosyl chlorides as well as the formation of anomeric 3-tert-butyl-4-hydroxyphenyl 4,6-di-O-acetyl-2,3-dideoxy-D-erythro-hex-2-eno-pyranosides by reaction between tert-butylhydroquinone and 3,4,6-tri-O-acetyl-D-glucal. All compounds, except 3-tert-butyl-4-hydroxyphenyl alpha- and beta-D-glucopyranosides, inhibited lipid peroxidation with a degree of potency comparable to that of tert-butyl hydroxyanisole.  相似文献   

4.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

5.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

6.
The synthesis of methyl (beta-D-glucopyranosyluronic acid)-(1-->3)-(2-acetamido-2-deoxy-6-O-sulfonato-beta-D-galactopyr anosyl)-(1-->4)-(beta-D-glucopyranosid)uronate trisodium salt, a chondroitin 6-sulfate trisaccharide derivative, is described. Loss of stereocontrol in glycosylation reactions involving activated 4,6-O-benzylidene derivatives of the 2-deoxy-2-trichloroacetamido-D-galacto series and D-glucuronic acid-derived acceptors was highlighted. This draw-back was overcome through the use of phenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D-gala ctopyranoside, which afforded the desired beta-linked disaccharide derivative in high yield with an excellent stereoselectivity. This later was submitted to acid-catalyzed methanolysis, followed by benzylidenation, and condensed with methyl 2,3,4-tri-O-benzoyl-1-O-trichloroacetimidoyl-alpha-D-glucopyran uronate to afford the expected trisaccharide derivative. Subsequent transformation of the N-trichloroacetyl group into N-acetyl, mild acid hydrolysis, selective O-sulfonation at C-6 of the amino sugar moiety, and saponification afforded the target molecule as its sodium salt in high yield.  相似文献   

7.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

8.
Two oligosaccharides, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)-alpha-D-Manp-(1-->4)-alpha-D-GlcpNAc (I) and alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)-alpha-D-Manp-(1-->4)-alpha-D-GlcpNAc (II), the glycosylphosphatidylinositol (GPI) anchor glycans from S. cerevesiae and A. fumigatus were synthesized as their methyl glycosides in a regio- and stereoselective manner. The pentasaccharide I was obtained from 6-O-selective glycosylation of methyl 2,3-di-O-benzoyl-alpha-D-mannopyranosyl-(1-->4)-2-acetamido-3,6-di-O-benzoyl-2-deoxy-alpha-D-glucopyranoside (8) with 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (9), followed by benzoylation, deacetylation, and mannosylation, and then by deprotection. The hexasaccharide (II) was obtained via condensation of allyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (17) with 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-mannopyranosyl trichloroacetimidate (16), followed by deallylation, trichloroacetimidation, and coupling with acceptor (8), and finally by deprotection.  相似文献   

9.
p-Nitrophenyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl bromide, the product deprotected, and the disaccharide glycoside converted into p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-4-O-beta-D-galactopyranosyl-beta- D-glucopyranoside. p-Nitrophenyl 3-O-benzoyl-4,6-di-O-benzylidene-alpha-D-mannopyranoside was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl bromide, and the product was deprotected, to yield p-nitrophenyl 2-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-alpha-D-mannopyranoside. p-Nitrophenyl 2-acetamido-3,4-di-O-benzoyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide, and, after reduction, trifluoroacetylation, and deprotection, p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-6-O-alpha-L-fucopyranosyl-beta-D-glucopyranoside was obtained.  相似文献   

10.
Methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside (1) furnished a crystalline 3-O-bromoacetyl derivative that was treated with the dichloromethyl methyl ether-ZnCl2 reagent to give 2,4-di-O-benzoyl-3-O-bromoacetyl-alpha-L-rhamnopyranosyl chloride (3). Compounds 1 and 3 were condensed under the conditions of base-deficient, silver trifluoromethanesulfonate-mediated glycosylation to give a fully protected rhamnobioside, which on O-debromoacetylation afforded the disaccharide nucleophile 10. Similar condensation of 3 with methyl 3-O-benzoyl-4,6-O-benzylidene-alpha-D-galactopyranoside, followed by O-debromoacetylation and condensation of the thus formed methyl O-(2,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-(1----2)-4,6-O-benzylidene- 3-O-benzoyl-alpha-D-galactopyranoside again with 3, gave the trisaccharide glycoside. Subsequent O-debromoacetylation gave 17, having only HO-3(3) unsubstituted. Silver perchlorate-mediated glycosylations of 1, 10, and 17 with 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-glucopyranosyl chloride afforded, with high alpha stereoselectivity, protected di-, tri-, and tetra-saccharide glycosides. Subsequent hydrogenation, followed by N-acetylation and O-deacylation, afforded three oligosaccharide glycosides having nonreducing terminal 2-acetamido-2-deoxy-alpha-D-glucopyranosyl residues and comprising successively larger portions of the repeating unit of Shigella dysenteriae type 1 O-antigen.  相似文献   

11.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

12.
Synthesis of a core heptasaccharide asparagine N4-[alpha-D-mannopyranosyl-(1 --> 6)-[(alpha-D-mannopyranosyl)-(1 --> 3)]-[(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1 --> 2)]-(beta-D-mannopyranosyl)-(1 --> 4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1 --> 4)-[(alpha-L-fucopyranosyl)-(1 --> 6)]-2-acetamido-2-deoxy-beta-D-glucopyranosyl]-L-asparagine (1a) found from CHO glycosylation mutant cell LEC 14 is described. The structure of 1a is highly novel in terms of the presence of an extra GlcNAc residue linked to the 2-position of beta-linked mannose. The synthesis was performed using p-methoxybenzyl-assisted intramolecular aglycon delivery as the key transformation. 4,6-O-TIDPS-protected thiomannoside methyl 2-O-p-methoxybenzyl-4,6-O-(1,1,3,3-tetraisopropyl)disiloxanylid ene-3-O-trimethylsilyl-1-thio-alpha-D-mannopyranoside was adopted for this particular purpose, which afforded beta-mannoside p-methoxyphenyl 2,3-O-(p-methoxybenzylidene)-4,6-O-(1,1,3,3-tetraisopropyl)+ ++disiloxanylidene-beta-D-mannopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside stereoselectively in 75% yield.  相似文献   

13.
Reaction of p-nitrophenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (3) under the usual conditions, followed by removal of the p-methoxybenzylidene group and O-deacylation, produced crystalline p-nitrophenyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-beta-D-glucopyranoside (6). Starting from p-nitrophenyl 2-acetamido 3,4-di-O-acetyl-2-deoxy-beta-D-glucopyranoside, the synthesis of p-nitrophenyl 2-acetamido-2-deoxy-6-O-beta-D-galactopyranosyl-beta-D-glucopyranoside was also accomplished.  相似文献   

14.
A first total synthesis of a novel sulfated ganglioside, 3'-O-sulfo-GM1b, is described. The suitably protected gangliotriose (GgOSe3) derivative, 2-(trimethylsilyl)ethyl (2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranosyl)-(1-->4)-(2,6-di-O-benzyl-3-O-p-methoxybenzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside was glycosylated with the alpha-NeuAc-(2-->3)-galactose donor to give the protected GM1b oligosaccharide (95%). After proper manipulation of the protecting groups, the oligosaccharide was converted into the target ganglioside by the successive introduction of the ceramide and sulfo groups, followed by complete deprotection.  相似文献   

15.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-beta- D-glucopyranoside with ethyl 2,3,4,6-tetra-O-benzyl- and ethyl 3-O-acetyl-2,4,6-tri-O-benzyl-1-thio-alpha-D-galactopyranoside in the presence of methyl trifluoromethanesulfonate led to trisaccharide 2-azidoethyl (2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1-->4)- (2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-(1-->4)2,3,6-tri-O- benzoyl-beta-D-glucopyranoside and its 3"-O-acetylated analogue, 2-azidoethyl (3-O-acetyl-2,4,6-tri-O-benzyl- alpha-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzoyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside, in yields of 85 and 83%, respectively. Deacetylation of the latter compound and subsequent glycosylation with 4-trichloroacetamidophenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D- galactopyranoside and 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in the corresponding selectively protected derivatives of tetrasaccharide GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 and pentasaccharide Gal(beta 1-->3)GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 in 88 and 73% yields, respectively. Removal of O-protecting groups, substitution of acetyl group for N-trichloroacetyl group, and reduction of the aglycone azide group resulted in the target 2-aminoethyl globo-tri-, -tetra-, and -pentasaccharide, respectively.  相似文献   

16.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

17.
Acetolysis of (Z)-1,3-di-O-acetyl-2,4-O-benzylidene-6-C-(2,4-dichlorophenyl)-D-xylo-he x- 5-enitol (3) afforded (E)-1,2,3,4-tetra-O-acetyl-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-enit ol and 2-C-[(R)-acetoxy(2,4-dichlorophenyl)methyl]-3,4,6-tri-O-acetyl-2-deoxy- beta-L-galacto- and -beta-L-gulo-hexopyranosylbenzene. The mechanism of this new rearrangement was studied by exchanging the substituents at C-1 and C-3 in 3 and those of the aromatic ring attached to C-6.  相似文献   

18.
The syntheses of three analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. N-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)succinamide was synthesized by the reaction of pentafluorophenyl succinamate with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosylamine was synthesized, and the complete assignment of the 1H NMR spectrum is given. Reaction of the protected beta-D-glycosylamine with L-malic acid chloralid in the presence of a coupling agent (EEDQ) gave N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-L-malamic acid chloralid that was deprotected two ways: (1) using ammonia, which gave N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-2-hydroxysuccinamide, and (2) using hydrazine, which gave N4-(2-acetamido-2-deoxy-1-D-glucopyranosyl)-L-2-hydroxysuccinamic acid hydrazide.  相似文献   

19.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

20.
Deprotection of the fully blocked disacharide allyl O-(2-amino-4,6-O-benzylidene-3-O-[(R)-1-carboxyethyl]-2-deoxy-beta-D-glucopyranosyl-1',2-lactam)-(1-->4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside by selective de-O-allylation and parallel removal of the benzylidene and O-benzyl groups is described. The resulting beta-muramyl lactam-(1-->4)-GlcNAc disaccharide is characterised as the per-O-acetylated derivative by 1H and 13C NMR spectroscopy and X-ray structure analysis. Conformational analysis about glycosidic bond of repeating units of bacterial spore cortex is based on experimental data and molecular modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号