首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The nucleotide sequence of a 1455-base pair TaqI-HinfI fragment of the rbs operon of Escherichia coli K12 has been determined. It includes the 3' terminus of rbsB (the gene for ribose-binding protein) and the entire rbsK gene, encoding ribokinase. Potential consensus promoter sequences and a stable stem-loop structure are present in the rbsB-rbsK intercistronic region. The regulatory significance of these sequence features is discussed with respect to the rbs operon. rbsK has been cloned downstream from the Serratia marcescens trp promoter on a multicopy plasmid. Cells harboring this plasmid, when grown on minimal ribose plus ampicillin, express ribokinase at the level of 2% of the soluble protein, and induction with indoleacrylic acid raises ribokinase levels another 8-fold. Ribokinase has been purified to homogeneity (216 mumol/min/mg) from a strain harboring this plasmid. Protein sequence analyses of peptides generated by cyanogen bromide cleavage and o-iodosobenzoic acid cleavage confirmed the translation initiation site and the reading frame of the DNA sequence. Amino acid compositions of native ribokinase and the C-terminal dodecapeptide agree with the predicted amino acid compositions, confirming the accuracy of the DNA sequence and the translation termination site.  相似文献   

4.
Y Park  Y J Cho  T Ahn    C Park 《The EMBO journal》1999,18(15):4149-4156
The Escherichia coli high-affinity ribose transporter is composed of the periplasmic ribose-binding protein (RBP or RbsB), the membrane component (RbsC) and the ATP-binding protein (RbsA). In order to dissect the molecular interactions initiating the transport process, RbsC suppressors for transport-defective rbsB mutations were isolated. These suppressors are localized in two regions of RbsC, which are allele-specific to N- or C-terminal domain mutations of RBP, suggesting that there are two distinct regions of RbsC, each interacting with one of the two domains of RBP. To demonstrate that these two regions provide a homodimeric binding surface for RBP we constructed a dimeric rbsC in which two genes are joined tandemly from head to tail with the addition of a linker. The dimeric RbsC protein is stable and functional in growth and ribose uptake. By exploiting the allele specificity between the domain-specific mutations and their suppressors, we generated all mutation-suppressor combinations in a single rbsB plus the dimeric rbsC genes. Their phenotypes are consistent with the proposal that the binding protein module interacts symmetrically with homodimeric RbsC. The mode of association proposed here for the ribose transport components could be extended to other ABC transporters with similar structural organizations.  相似文献   

5.
6.
Chimeric genes encoding full-length copies of rbsA and rbsC connected by segments coding for short bridge peptides were constructed and expressed in Escherichia coli. Surprisingly, the chimeric genes complemented the strain in which rbsA and rbsC were deleted. The chimeric proteins were overproduced, and the products were purified by affinity chromatography. In order to obtain highly purified protein, a poly-His leader peptide was incorporated so that Ni-chelate affinity chromatography could be employed. The leader peptide and the bridge peptide were designed with factor Xa-cleavable sites to permit recovery of the individual RbsA and RbsC protein. A rbsC gene encoding a poly-His leader was also constructed and expressed. Both the chimeric RbsA-C species and the poly-HisRbsC were produced at levels that permitted isolation of the equivalent of milligram quantities of RbsC per liter of culture. This is a substantial increase in amounts from any previous RbsC production vectors. All proteins from the rbs operon have now been overproduced and substantially purified.  相似文献   

7.
The nucleotide-binding component of the high-affinity ribose transport system of Escherichia coli, RbsA, was overproduced from a T7-7 expression vector, and the protein was purified. Biochemical analyses of the purified protein indicated that the ATP analogues, 5'-FSBA and 8-azido ATP, covalently labeled the protein, a reaction that was inhibited by ATP, but not by GTP or CTP. The pure protein exhibited low-level ATPase activity with a K(m) of about 140 microM. Analyses of bacterial strains carrying chromosomal deletions of rbsA and other rbs genes suggested that RbsA is important for the chemotaxis function, a surprising result that was not anticipated from previous studies. However, an inconsistency between the several results from deletion strains raises questions regarding the interpretations of the in vivo data.  相似文献   

8.
The ribose-binding protein of Escherichia coli [Willis, R. C., and Furlong, C. E. (1974) J. Biol. Chem.249, 6926–6929] has been shown to be a required common receptor component for high-affinity ribose transport and for chemotaxis toward this attractant. Mutants devoid of the ribose-binding protein are missing high-affinity ribose transport and do not respond chemotactically to this sugar, whereas the response to other attractants is normal. Eight independently isolated ribose-positive revertant strains regained the binding protein, high-affinity ribose transport, and ribose chemotaxis. One revertant which grows slowly on ribose as a sole carbon source did not regain the binding protein, high-affinity transport, or ribose chemotaxis.  相似文献   

9.
Ribose-binding protein is exported to the periplasmic compartment of Escherichia coli by a process that involves proteolytic cleavage of an amino-terminal extension of amino acids from the precursor form of the protein. In a collection of mutants isolated as defective in the Rbs transport system, a strain was identified that contained only precursor ribose-binding protein, none of which was exported to its normal location in the periplasm. The mutated rbsB contained a base substitution that results in a change of leucine to a proline at position-17 in the signal sequence. A pseudorevertant of the mutant contained proteolytically processed, active ribose-binding protein in the periplasm. The pseudorevertant rbsB carried a second mutation: serine at position-15 in the signal sequence was changed to phenylalanine. Isolation of a signal sequence mutant and a corresponding pseudorevertant without specific selection or site-directed mutagenesis emphasizes the possibility of obtaining export mutants without the use of procedures that could bias or limit the range of mutations found. Explanation of the extreme phenotype of the mutant and the effective correction of that phenotype in the pseudorevertant requires extension of current notions of critical features of signal sequences.  相似文献   

10.
Mutations arose from an Escherichia coli strain defective in the high (Rbs/ribose) and low (Als/allose and Xyl/xylose) affinity D-ribose transporters, which allow cells to grow on D-ribose. Genetic tagging and mapping of the mutations revealed that two loci in the E. coli linkage map are involved in creating a novel ribose transport mechanism. One mutation was found in ptsG, the glucose-specific transporter of phosphoenolpyruvate:carbohydrate phosphotransferase system and the other in mlc, recently reported to be involved in the regulation of ptsG. Five different mutations in ptsG were characterized, whose growth on D-ribose medium was about 80% that of the high affinity system (Rbs+). Two of them were found in the predicted periplasmic loops, whereas three others are in the transmembrane region. Ribose uptakes in the mutants, competitively inhibited by D-glucose, D-xylose, or D-allose, were much lower than that of the high affinity transporter but higher than those of the Als and Xyl systems. Further analyses of the mutants revealed that the rbsK (ribokinase) and rbsD (function unknown) genes are involved in the ribose transport through PtsG, indicating that the phosphorylation of ribose is not mediated by PtsG and that some unknown metabolic function mediated by RbsD is required. It was also found that D-xylose, another sugar not involved in phosphorylation, was efficiently transported through the wild-type or mutant PtsG in mlc-negative background. The efficiencies of xylose and glucose transports are variable in the PtsG mutants, depending on their locations, either in the periplasm or in the membrane. In an extreme case of the transmembrane change (I283T), xylose transport is virtually abolished, indicating that the residue is directly involved in determining sugar specificity. We propose that there are at least two domains for substrate specificity in PtsG with slightly altered recognition properties.  相似文献   

11.
L-arabinose transport systems in Escherichia coli K-12.   总被引:10,自引:8,他引:2       下载免费PDF全文
Mutations in the arabinose transport operons of Escherichia coli K-12 were isolated with the Mu lac phage by screening for cells in which beta-galactosidase is induced in the presence of L-arabinose. Standard genetic techniques were then used to isolate numerous mutations in either of the two transport systems. Complementation tests revealed only one gene, araE, in the low-affinity arabinose uptake system. P1 transduction placed araE between lysA (60.9 min) and thyA (60.5 min) and closer to lysA. The operon of the high-affinity transport system was found to contain two genes: araF, which codes for the arabinose-binding protein, and a new gene, araG. The newly identified gene, araG, was shown by two-dimensional gel electrophoresis to encode a protein which is located in the membrane. Only defects in araG could abolish uptake by the high-affinity system under the conditions we used.  相似文献   

12.
Ribose-binding protein is a bifunctional soluble receptor found in the periplasm of Escherichia coli. Interaction of liganded binding protein with the ribose high affinity transport complex results in the transfer of ribose across the cytoplasmic membrane. Alternatively, interaction of liganded binding protein with a chemotactic signal transducer, Trg, initiates taxis toward ribose. We have generated a functional map of the surface of ribose-binding protein by creating and analyzing directed mutations of exposed residues. Residues in an area on the cleft side of the molecule including both domains have effects on transport. A portion of the area involved in transport is also essential to chemotactic function. On the opposite face of the protein, mutations in residues near the hinge are shown to affect chemotaxis specifically.  相似文献   

13.
Highly purified ribose-binding protein from Escherichia coli has been used to reconstitute a binding-protein-dependent ribose transport in spheroplasts derived from a binding-protein-deficient mutant of E coli K 12, and in spheroplasts derived from Salmonella typhimurium. The cross-species reconstitution was nearly as efficient as the reconstitution of the E coli strain from which the binding protein was derived. Antibody raised against the ribose binding protein completely prevented reconstitution, whereas it had no effect on whole cells. The reconstitution procedure has been improved by generating spheroplasts from cells grown in a rich medium and by reducing the background uptake in spheroplasts through a special washing procedure. Rapid purification of ribose binding protein by high pressure liquid chromatography is also described.  相似文献   

14.
The ribose-binding protein (RBP) of Escherichia coli , located in the periplasm, binds to ribose and mediates transport and chemotaxis. The regions on the tertiary structure of RBP that interact with the membrane permease, an ABC transporter, were genetically probed by screening a mutation using the chimeric receptor Trz. Trz is a hybrid protein between the periplasmic domain of chemoreceptor Trg and the cytoplasmic portion of osmosensor EnvZ, which provides a system for monitoring the chemotactic interaction of RBP on MacConkey agar plates when coupled with a reporter lacZ fused to an ompC gene. The expression of ompC can be increased by an interaction of ribose-bound RBP with Trz. A transport defect, either in the binding protein or in the membrane permease, causes a signalling-constitutive Lac+ phenotype of Trz even in the absence of ribose. This appears to be due to the presence of a small amount of ribose, which is normally taken up by the high-affinity transport system. By taking advantage of this, we have designed a system for genetic screening that permits a selection for mutations in the binding protein, causing specific defects in permease interaction but not in tactic interaction. Mutant RBPs that were isolated were unable to perform normal ribose uptake and to utilize ribose as a carbon source, while other functions such as taxis and sugar-binding properties were not substantially affected. The mutational changes were repeatedly found in several residues of RBP, concentrating on three surface regions and comprising two domains of the tertiary structure. We suggest that the two regions, including residues 52 and 166, are specifically involved in the permease interaction while the third region, including residues 72, 134, and others, recognizes both the permease and the chemosensory receptor.  相似文献   

15.
Park J  van Koeverden P  Singh B  Gupta RS 《FEBS letters》2007,581(17):3211-3216
The gene responsible for ribokinase (RK) in human/eukaryotic cells has not yet been identified/characterized. Blast searches with E. coli RK have identified a human protein showing significant similarity to the bacterial RK. The cDNA for this protein was expressed in E. coli and the recombinant protein efficiently phosphorylated ribose to ribose-5-phosphate using ATP, confirming its identity as RK. In contrast to ribose, the enzyme exhibited very little to no phosphorylation of D-arabinose, D-xylose, D-fructose and D-galactose. The catalytic activity of human RK was dependent upon the presence of inorganic phosphate, as observed previously for E. coli RK and mammalian adenosine kinases (AK). A number of activators and inhibitors of human AK, produced very similar effects on the human and E. coli RKs, indicating that the catalytic mechanism of RK is very similar to that of the AKs.  相似文献   

16.
The predicted amino acid sequence of rbsA, a gene from the high affinity ribose transport operon (rbs) of Escherichia coli K12, is homologous to the products of hisP, malK, and pstB, components of the histidine, maltose, and phosphate high affinity transport operons. The recent finding by Hobson et al. (Hobson, A. C., Weatherwax, R., and Ames, G.F.-L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7333-7337) that the hisP and malK products bind ATP suggests that these four gene products may be involved in coupling the energy from ATP to drive the active transport in their respective transport systems. Each gene product contains a sequence of glycine and basic residues which are characteristic of an ATP-binding site (Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982) EMBO J. 1, 945-951). Interestingly the N- and C-terminal halves of rbsA are also homologous, suggesting that a primordial gene duplication and subsequent fusion of the products occurred.  相似文献   

17.
We have cloned the gene encoding a 43-kilodalton transaminase from Escherichia coli K-12 with a specificity for L-phosphinothricin [L-homoalanine-4-yl-(methyl)phosphinic acid], the active ingredient of the herbicide Basta (Hoechst AG). The structural gene was isolated, together with its own promoter, and shown to be localized on a 1.6-kilobase DraI-BamHI fragment. The gene is subject to catabolite repression by glucose; however, repression could be relieved completely when 4-aminobutyrate (GABA) served as the sole nitrogen source. The regulation pattern obtained and a comparison of the restriction map of the initially cloned 15-kilobase SalI fragment with the physical map of the E. coli K-12 genome suggest that the cloned gene is identical with gabT, a locus on the gab gene cluster of E. coli K-12 which codes for the GABA:2-ketoglutartate transaminase (EC 2.6.1.19). A number of expression plasmids carrying the isolated transaminase gene were constructed. With these constructs, the transaminase expression in transformants of E. coli could be increased up to 80-fold compared with that in a wild-type control, and the transaminase constituted up to 20% of the total soluble protein of the bacteria. Thus, the protein crude extracts of the transformants could be used, after a simple heat precipitation step, for the biotechnological production of L-phosphinothricin in an enzyme reactor.  相似文献   

18.
Hydroxamate-mediated transport of iron controlled by ColV plasmids.   总被引:23,自引:12,他引:11       下载免费PDF全文
A new high-affinity system for iron transport, associated with the presence of ColV plasmids, has been detected in Escherichia coli and partially characterized. The presence of such "iron-transport plasmids" in E. coli cells that are defective in enterochelin-mediated transport of iron enabled them to grow in media to which 2,2'-dipyridyl had been added to reduce availability of iron. In addition, the presence of plasmid deoxyribonucleic acid in a mutant defective in enterochelin biosynthesis was associated with a marked increase in the rate of radioactive-iron uptake. Plasmid-determined uptake of iron was distinct from previously recognized systems for iron transport in E. coli K-12, and the colicin V molecule appeared not to be directly involved. Hydroxylamine-nitrogen could be detected in cell pellets of ColV+ cultures, and similar material was detected in supernatant fluids of late log- or stationary-phase cultures. The hydroxamate material was not detected in cell pellets or culture supernatants of strains from which plasmids had been eliminated, and a 95% decrease in hydroxamate synthesis was observed when cells were grown in minimal medium containing 2 microM iron.  相似文献   

19.
20.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号