首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo-overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations.  相似文献   

2.
Summary Four quantitative traits were studied by analysing F2 data derived from a 9 × 9 diallel cross utilizing widely divergent, inbred, erect cultivars of peanuts, A. hypogaea. Bidirectional dominance was found in the traits total pod yield per plant and number of days from planting to first flower; in pod size, the alleles giving small pods were consistently dominant and for high tops' weight, dominance and overdominance were found. The high heritability of pod yield/plant (0.79) indicates that breeding for higher yield/plant can succeed if large F2 populations are grown and rigorous visual selection combined with progeny testing are employed. The genetic correlations of pod yield/plant with other traits were low. Breeding for plants with large (jumbo) pods can be aided by the fact that they are homozygous recessive, or nearly so. Simultaneous breeding for high yields and large pods is possible: there was a positive (but low) genetic correlation between the two (0.16). A modification by which less biased estimates of the number of effective factors can be obtained and a possible relationship between bidirectional dominance and genic interaction were proposed.  相似文献   

3.
The two principal theories of the causal mechanism for inbreeding depression are the partial dominance hypothesis and the overdominance hypothesis. According to the first hypothesis, inbreeding increases the frequency of homozygous combinations of deleterious recessive alleles thereby decreasing fitness, whereas the overdominance hypothesis posits that inbreeding increases homozygosity and thus reduces the frequency of the superior heterozygotes. These two hypotheses make different predictions on the effect of crossing inbred lines: the overdominance hypothesis predicts that trait means will be restored to the outbred means, whereas the partial dominance hypothesis predicts that trait means will exceed those of the outbred population. I tested these predictions using seven inbred lines of the sand cricket, Gryllus firmus. Fourteen generations of brother-sister mating resulted in an inbreeding depression of 20-34% in four traits: nymphal weights at ages 14 days, 21 days, 28 days, and early fecundity. An incomplete diallel cross of these lines showed genetic variation among lines and an increase in all trait means above the outbred means, with three being significantly higher. These results provide support for the partial dominance hypothesis and are inconsistent with the overdominance hypothesis.  相似文献   

4.

Background

Genomic selection is an appealing method to select purebreds for crossbred performance. In the case of crossbred records, single nucleotide polymorphism (SNP) effects can be estimated using an additive model or a breed-specific allele model. In most studies, additive gene action is assumed. However, dominance is the likely genetic basis of heterosis. Advantages of incorporating dominance in genomic selection were investigated in a two-way crossbreeding program for a trait with different magnitudes of dominance. Training was carried out only once in the simulation.

Results

When the dominance variance and heterosis were large and overdominance was present, a dominance model including both additive and dominance SNP effects gave substantially greater cumulative response to selection than the additive model. Extra response was the result of an increase in heterosis but at a cost of reduced purebred performance. When the dominance variance and heterosis were realistic but with overdominance, the advantage of the dominance model decreased but was still significant. When overdominance was absent, the dominance model was slightly favored over the additive model, but the difference in response between the models increased as the number of quantitative trait loci increased. This reveals the importance of exploiting dominance even in the absence of overdominance. When there was no dominance, response to selection for the dominance model was as high as for the additive model, indicating robustness of the dominance model. The breed-specific allele model was inferior to the dominance model in all cases and to the additive model except when the dominance variance and heterosis were large and with overdominance. However, the advantage of the dominance model over the breed-specific allele model may decrease as differences in linkage disequilibrium between the breeds increase. Retraining is expected to reduce the advantage of the dominance model over the alternatives, because in general, the advantage becomes important only after five or six generations post-training.

Conclusion

Under dominance and without retraining, genomic selection based on the dominance model is superior to the additive model and the breed-specific allele model to maximize crossbred performance through purebred selection.  相似文献   

5.
We tested the hypothesis that small, isolated populations would show less depression in fitness when inbred than would large, central populations. Laboratory stocks of Peromyscus leucopus and P. polionotus were established from insular, peninsular, and central populations. The isolated populations had one-third to one-half the genic diversity of central populations. Responses to inbreeding were highly varied: some populations had smaller litters, others experienced higher mortality, some showed slower growth rates, and one displayed no measurable effects when inbred. These results suggest that inbreeding depression is controlled by a small number of genes and that the size of the genetic load depends on which alleles are present in the founders of a population. The severity of fitness depression in inbred litters did not correlate with initial genic diversity of the stocks nor, therefore, with the size of the wild populations. Fitness measures appeared linearly related to the inbreeding coefficient of the liters, with no diminution of deleterious effects through subsequent generations of inbreeding. Thus overdominance of fitness traits probably contributed as much to the genetic load as did deleterious recessive alleles. The inbreeding level of the dam negatively affected the size, growth, and survival of litters only in genetically diverse populations, indicating that the load of recessive alleles negatively impacting maternal care may have been reduced by selection in the more peripheral populations during past bottlenecks.  相似文献   

6.
Summary Temperature preference differences were found between three inbred strains of mice, Balb/c having a lower preference than C3H and C57Bl. Hybrids with Balb/c had preferences between the inbred strains, while the C3HxC57Bl hybrid was close to the component inbred strains. Mice choosing low temperatures were heavier, had higher body temperatures and lower hair densities than those choosing high temperatures. Arguments are presented for regarding these associations as adaptive, and being morphological and physiological correlates of the behavioural measure temperature preference, a trait itself of ecological significance in habitat selection. It is considered that these traits are subjected to stabilizing selection for the optimum for a given population, to provide the most efficient habitat selection for that population.Tail length is not so intimately associated with temperature preference and shows overdominance in the direction of long tails unlike the other traits measured. In any case, published data show that while there is a general tendency for shorter tails to occur in environments with low temperatures and vice versa, this is not always true, so that tail length is not necessarily a good guide to the habitat selected.Mice were measured at two ages (15 to 18 days, and 55 to 58 days) for temperature preference, body weight and tail length. Developmental changes were found in that the preferred temperature was lower in the older mice. Furthermore, relative changes between age groups for all traits differed between some genotypes, indicating varying developmental changes according to genotype.  相似文献   

7.
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non‐neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater‐to‐freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between‐salinity F1 crosses) relative to within‐salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between‐salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between‐salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions.  相似文献   

8.
Significant differences between strains were found for open field activity and emotionality, exploratory activity, initial reaction to shock, conditioned avoidance learning, and weight for three inbred strains (Balb/c, C57Bl and C3H), such that the heaviest strain (Balb/c) was the least active and most emotional in the open field, gave the lowest score for exploratory activity and longest reaction to shock times, and was the poorest at conditioned avoidance learning.The hybrids from crosses with C57Bl tended more towards complete dominance and overdominance than did the Balb/c × C3H hybrid, probably because the Balb/c and C3H strains have some common ancestry.Heterosis was most marked for traits involving exploration or learning. Variability of the hybrids for these traits was often lower than the parents, i.e. they showed behavioural homeostasis. For other traits variability of the hybrids tended towards the parent whose genotype was dominant for the trait.Of the non-genetic factors studied, age and litter size were found to have the greatest effect on the behavioural traits. Parity was found only to affect weight. Sex differences were found for weight and emotionality.  相似文献   

9.
Quantitative genetic approaches have been developed that allow researchers to determine which of two mechanisms, mutation accumulation (MA) or antagonistic pleiotropy (AP), best explain observed variation in patterns of senescence using classical quantitative genetic techniques. These include the creation of mutation accumulation lines, artificial selection experiments and the partitioning of genetic variances across age classes. This last strategy has received the lion''s share of empirical attention. Models predict that inbreeding depression (ID), dominance variance and the variance among inbred line means will all increase with age under MA but not under those forms of AP that generate marginal overdominance. Here, we show that these measures are not, in fact, diagnostic of MA versus AP. In particular, the assumptions about the value of genetic parameters in existing AP models may be rather narrow, and often violated in reality. We argue that whenever ageing-related AP loci contribute to segregating genetic variation, polymorphism at these loci will be enhanced by genetic effects that will also cause ID and dominance variance to increase with age, effects also expected under the MA model of senescence. We suggest that the tests that seek to identify the relative contributions of AP and MA to the evolution of ageing by partitioning genetic variance components are likely to be too conservative to be of general value.  相似文献   

10.
S Pálsson  P Pamilo 《Genetics》1999,153(1):475-483
The effects of recessive, deleterious mutations on genetic variation at linked neutral loci can be heterozygosity-decreasing because of reduced effective population sizes or heterozygosity-increasing because of associative overdominance. Here we examine the balance between these effects by simulating individual diploid genotypes in small panmictic populations. The haploid genome consists of one linkage group with 1000 loci that can have deleterious mutations and a neutral marker. Combinations of the following parameters are studied: gametic mutation rate to harmful alleles (U), population size (N), recombination rate (r), selection coefficient (s), and dominance (h). Tight linkage (r 相似文献   

11.
Inbreeding is unavoidable in small, isolated populations and can cause substantial fitness reductions compared to outbred populations. This loss of fitness has been predicted to elevate extinction risk giving it substantial conservation significance. Inbreeding may result in reduced fitness for two reasons: an increased expression of deleterious recessive alleles (partial dominance hypothesis) or the loss of favourable heterozygote combinations (overdominance hypothesis). Because both these sources of inbreeding depression are dependent upon dominance variance, inbreeding depression is predicted to be greater in life history traits than in morphological traits. In this study we used replicate inbred and control lines of Drosophila simulans to address three questions:1) is inbreeding depression greater in life history than morphological traits? 2) which of the two hypotheses is the major underlying cause of inbreeding depression? 3) does inbreeding elevate population extinction risk? We found that inbreeding depression was significantly greater in life history traits compared to morphological traits, but were unable to find unequivocal support for either the overdominance or partial dominance hypotheses as the genetic basis of inbreeding depression. As predicted, inbred lines had a significantly greater extinction risk.  相似文献   

12.
Summary The mode of genetic control of male screw-worm (Diptera: Calliphoridae) mating behavior was examined using diallel cross and artificial selection. Diallel crosses showed strong dominance effects, with hybrids being uniformly more successful in copulation than their more inbred parental strains. Weaker additive and reciprocal effects were also noted. Environmental (replicate) effects were highly significant. Regression of array variances and covariances indicated that epistatic interactions or unequal allele distribution during gametogenesis may have occurred and that high courtship propensity polygenes show dominance over low propensity genes. Artificial selection on males from outbred strains from Guatemala and Belize resulted in a decreased number of mating attempts for lines selected for reduced activity, but mating attempts in lines selected for high mating activity did not increase. A combination of inbreeding during the selection cycles as well as selection for recessive traits would explain this response. The two types of experiments were in general agreement, indicating significant dominance and environmental influence on male mating behavior with weaker additive and possible maternal effects.  相似文献   

13.
Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the "classical" NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits.  相似文献   

14.
Y. B. Fu  K. Ritland 《Genetics》1994,136(1):323-331
The relative importance of different modes of gene expression of viability genes contributing to inbreeding depression was investigated in the wild plant, Mimulus guttatus. Viability genes were identified by self-fertilizing 31 outbred plants, each heterozygous for three to nine unlinked allozyme markers, and analyzing segregation ratios of selfed progeny at maturity for deviations from 1:2:1 ratios. In this study, 24 linkages of viability genes to marker loci were detected. To infer the nature of gene action for these viability genes, a ``model-free' graphical method was developed that examines the ``space' of segregation ratios allowed by each of seven selection models (i.e., overdominance, complete recessivity, partial recessivity, additivity, partial dominance, complete dominance and underdominance). Using this method, we found that, of 24 linkages detected, 18 were consistent with either partial dominance, complete dominance or underdominance. Six were consistent with either partial recessivity, complete recessivity or overdominance. This finding indicates that, in these chromosomal segments identified by allozyme markers, partial dominance plays the predominant role in inbreeding depression. This is inconsistent with either the dominance or overdominance hypotheses proposed to account for inbreeding depression.  相似文献   

15.
Reciprocal recurrent selection (RRS), which assumes overdominant loci to be important, alters two genetically different populations to improve their crossbred mean. Individual plants from two populations (A and B) are selfed and also crossed with plants from the reciprocal female tester population (B and A, respectively). Selection is based on the mean of crossbred families, and the selected individuals are randomly mated within A and B to form new populations.—We propose two alternatives to RRS. The first (RRS-I) uses, as the tester of population A, a population (LB) that is derived from population B by family selection for low yield. The second (RRS-II) is similar to RRS-I, but also uses, as the tester of B, a population (LA) that is derived from population A by family selection for low yield.—The expected crossbred means of RRS, RRS-I, and RRS-II were compared, assuming equal σP, at several cycles of selection for incomplete and complete dominance, and for several cases of overdominance (depending on the gene frequencies in A and B, and on the equilibrium gene frequency).—The choice of selection method depends on the importance of the effects of overdominant loci compared to loci exhibiting incomplete or complete dominance. If overdominance is unimportant, RRS-II is the best selection method, followed by RRS-I and RRS. If overdominance is important, both RRS and RRS-I are superior to RRS-II; RRS is preferred to RRS-I if the effects of overdominant loci are sufficiently important. If the genetic model is a mixture of levels of dominance at different loci, a combination of selection systems is suggested.  相似文献   

16.
The correlation between genetic variation and recombination rate was investigated in a structured mouse population. Nucleotide sequence data from 19 autosomal DNA loci from eight inbred strains of mouse (Mus musculus) sampled from three major subspecies were analyzed. The recombination rate was estimated from the comparison of genetic and physical map distances between markers flanking a 10-cM region of each locus. The strains were categorized into four groups (subpopulations) based on geography. By partitioning the genetic diversity into within-group and among-group variation, we detected a positive correlation between the recombination rate and nucleotide diversity within groups. The level of nucleotide differentiation among groups (G(ST)) showed a negative correlation with the rate of recombination. There was no significant correlation between recombination rate and nucleotide diversity when data from different subpopulations were pooled. No correlation was detected between recombination rate and nucleotide divergence of M. musculus and M. spicilegus. These patterns deviate from the strict neutral expectation under the constant nucleotide substitution rate, and they are likely to have been formed either by a hitchhiking effect of positively selected mutants or by background selection of deleterious mutants occurring in a subdivided population. Our series of comparisons show that because a real population always has some structure, incorporation of its information is important in detecting non-neutral evolution.  相似文献   

17.
Melchinger AE  Utz HF  Piepho HP  Zeng ZB  Schön CC 《Genetics》2007,177(3):1815-1825
Heterosis is widely used in breeding, but the genetic basis of this biological phenomenon has not been elucidated. We postulate that additive and dominance genetic effects as well as two-locus interactions estimated in classical QTL analyses are not sufficient for quantifying the contributions of QTL to heterosis. A general theoretical framework for determining the contributions of different types of genetic effects to heterosis was developed. Additive x additive epistatic interactions of individual loci with the entire genetic background were identified as a major component of midparent heterosis. On the basis of these findings we defined a new type of heterotic effect denoted as augmented dominance effect di* that comprises the dominance effect at each QTL minus half the sum of additive x additive interactions with all other QTL. We demonstrate that genotypic expectations of QTL effects obtained from analyses with the design III using testcrosses of recombinant inbred lines and composite-interval mapping precisely equal genotypic expectations of midparent heterosis, thus identifying genomic regions relevant for expression of heterosis. The theory for QTL mapping of multiple traits is extended to the simultaneous mapping of newly defined genetic effects to improve the power of QTL detection and distinguish between dominance and overdominance.  相似文献   

18.
The term "differential dominance" describes the situation in which the dominance effects at a pleiotropic locus vary between traits. Directional selection on the phenotype can lead to balancing selection on differentially dominant pleiotropic loci. Even without any individual overdominant traits, some linear combination of traits will display overdominance at a locus displaying differential dominance. Multivariate overdominance may be responsible, in part, for high levels of heterozygosity found in natural populations. We examine differential dominance of 70 mouse skeletal traits at 92 quantitative trait loci (QTL). Our results indicate moderate to strong additive and dominance effects at pleiotropic loci, low levels of individual-trait overdominance, and universal multivariate overdominance. Multivariate overdominance affects a range of 6% to 81% of morphospace, with a mean of 32%. Multivariate overdominance tends to affect a larger percentage of morphospace at pleiotropic loci with antagonistic effects on multiple traits (42%). We conclude that multivariate overdominance is common and should be considered in models and in empirical studies of the role of genetic variation in evolvability.  相似文献   

19.
20.
Dumas D  Britton-Davidian J 《Genetics》2002,162(3):1355-1366
The effects of chromosomal rearrangements on recombination rates were tested by the analysis of chiasma distribution patterns in wild house mice. Males and females of two chromosomal races from Tunisia differing by nine pairs of Robertsonian (Rb) fusions (standard all-acrocentric, 2N = 40 and 2N = 22) were studied. A significant decrease in chiasma number (CN) was observed in Rb mice compared to standard ones for both sexes. The difference in CN was due to a reduction in the number of proximal chiasmata and was associated with an overall more distal redistribution. These features were related to distance of chiasmata to the centromere, suggesting that the centromere effect was more pronounced in Rb fusions than in acrocentric chromosomes. These modifications were interpreted in terms of structural meiotic constraints, although genic factors were likely involved in patterning the observed differences between sexes within races. Thus, the change in chromosomal structure in Rb mice was associated with a generalized decrease in recombination due to a reduction in diploid number, a lower CN, and a decrease in the efficiency of recombination. The effects of such modifications on patterns of genic diversity are discussed in the light of models of evolution of recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号