首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-sensitive mutants of Saccharomyces cerevisiae were isolated by insertional mutagenesis using the HIS3 marked retrotransposon TyH3HIS3. In such mutants, the TyHIS3 insertions are expected to identify loci which encode genes essential for cell growth at high temperatures but dispensable at low temperatures. Five mutations were isolated and named hit for high temperature growth. The hit1-1 mutation was located on chromosome X and conferred the pet phenotype. Two hit2 mutations, hit2-1 and hit2-2, were located on chromosome III and caused the deletion of the PET18 locus which has been shown to encode a gene required for growth at high temperatures. The hit3-1 mutation was located on chromosome VI and affected the CDC26 gene. The hit4-1 mutation was located on chromosome XIII. These hit mutations were analyzed in an attempt to identify novel genes involved in the heat shock response. The hit1-1 mutation caused a defect in synthesis of a 74-kD heat shock protein. Western blot analysis revealed that the heat shock protein corresponded to the SSC1 protein, a member of the yeast hsp70 family. In the hit1-1 mutant, the TyHIS3 insertion caused a deletion of a 3-kb DNA segment between the delta 1 and delta 4 sequences near the SUP4 locus. The 1031-bp wild-type HIT1 DNA which contained an open reading frame encoding a protein of 164 amino acids and the AGG arginine tRNA gene complemented all hit1-1 mutant phenotypes, indicating that the mutant phenotypes were caused by the deletion of these genes. The pleiotropy of the HIT1 locus was analyzed by constructing a disruption mutation of each gene in vitro and transplacing it to the chromosome. This analysis revealed that the HIT1 gene essential for growth at high temperatures encodes the 164-amino acid protein. The arginine tRNA gene, named HSX1, is essential for growth on a nonfermentable carbon source at high temperatures and for synthesis of the SSC1 heat shock protein.  相似文献   

2.
A 50-nucleotide coding gap divides bacteriophage T4 gene 60 into two open reading frames. In response to cis-acting stimulatory signals encrypted in the mRNA, the anticodon of the ribosome-bound peptidyl tRNA dissociates from a GGA codon at the end of the first open reading frame and pairs with a GGA codon 47 nucleotides downstream just before the second open reading frame. Mutations affecting ribosomal protein L9 or tRNA(Gly)(2), the tRNA that decodes GGA, alter the efficiency of bypassing. To understand the mechanism of ribosome slippage, this work analyzes the influence of these bypassing signals and mutant translational components on -1 frameshifting at G GGA and hopping over a stop codon immediately flanked by two GGA glycine codons (stop-hopping). Mutant variants of tRNA(Gly)(2) that impair bypassing mediate stop-hopping with unexpected landing specificities, suggesting that these variants are defective in ribosomal P-site codon-anticodon pairing. In a direct competition between -1 frameshifting and stop-hopping, the absence of L9 promotes stop-hopping at the expense of -1 frameshifting without substantially impairing the ability of mutant tRNA(Gly)(2) variants to re-pair with the mRNA by sub-optimal pairing. These observations suggest that L9 defects may stimulate ribosome slippage by enhancing mRNA movement through the ribosome rather than by inducing an extended pause in translation or by destabilizing P-site pairing.Two of the bypassing signals, a cis-acting nascent peptide encoded by the first open reading frame and a stemloop signal located in the 5' portion of the coding gap, stimulate peptidyl-tRNA slippage independently of the rest of the gene 60 context. Evidence is presented suggesting that the nascent peptide signal may stimulate bypassing by destabilizing P-site pairing.  相似文献   

3.
The trm1 mutation of Saccharomyces cerevisiae is a single nuclear mutation that affects a specific base modification of both cytoplasmic and mitochondrial tRNA. Transfer RNA isolated from trm1 cells lacks the modified base N2,N2-dimethylguanosine, and extracts from these cells do not have detectable N2,N2-dimethylguanosine-specific tRNA methyltransferase activity. As part of our efforts to determine how this mutation affects enzyme activities in two different cellular compartments we have isolated the TRM1 locus by genetic complementation. The TRM1 locus restores the N2,N2-dimethylguanosine modification to both cytoplasmic and mitochondrial tRNA in trm1 cells. An open reading frame in this TRM1 gene is essential for complementation of the trm1 phenotype. Expression of this open reading frame in Escherichia coli converts the organism from one that neither makes N2,N2-dimethylguanosine nor has N2,N2-dimethylguanosine-specific tRNA methyltransferase activity into one that does. This result suggests that the TRM1 locus is the structural gene for the tRNA modification enzyme and that both nuclear/cytoplasmic and mitochondrial forms of the methyltransferase are produced from the same gene.  相似文献   

4.
To better understand the dynamic regulation of microtubule structures in yeast, we studied a conditional-lethal beta-tubulin mutation tub2-150. This mutation is unique among the hundreds of tubulin mutations isolated in Saccharomyces cerevisiae in that it appears to cause an increase in the stability of microtubules. We report here that this allele is a mutation of threonine 238 to alanine, and that tub2-150 prevents the spindle from elongating during anaphase, suggesting a nuclear microtubule defect. To identify regulators of microtubule stability and/or anaphase, yeast genes were selected that, when overexpressed, could suppress the tub2-150 temperature-sensitive phenotype. One of these genes, JSN1, encodes a protein of 125 kDa that has limited similarity to a number of proteins of unknown function. Overexpression of the JSN1 gene in a TUB2 strain causes that strain to become more sensitive to benomyl, a microtubule-destabilizing drug. Of a representative group of microtubule mutants, only one other mutation, tub2-404, could be suppressed by JSN1 overexpression, showing that JSN1 is an allele-specific suppressor. As tub2-404 mutants are also defective for spindle elongation, this provides additional support for a role for JSN1 during anaphase.  相似文献   

5.
The ERG3 gene from Saccharomyces cerevisiae has been cloned by complementation of an erg3-2 mutation. ERG3 is the putative gene encoding the C-5 sterol desaturase required for ergosterol biosynthesis. The functional gene has been localized on a 2.5-kb HindIII-BamHI fragment containing an open reading frame comprising 365 amino acids. Gene disruption resulting from a deletion/substitution demonstrates that ERG3 is not essential for cell viability or the sparking function.  相似文献   

6.
Y Kuriki 《Journal of bacteriology》1989,171(10):5452-5457
pBR322 contains the amp gene encoding beta-lactamase. When Escherichia coli carrying this plasmid is exposed to heat shock, beta-lactamase synthesis is repressed transiently at the translational level. To identify the DNA element responsible for this translational repression, DNA segments containing the translation start region of the amp gene were excised from pAT153 and fused in frame with the lacZ reading frame in the open reading frame vector pORF1. These constructs were introduced into E. coli, and the effect of heat shock of the cells on the synthesis of beta-galactosidase starting from the amp start codon was examined. As is the case for pBR322-encoded synthesis of beta-lactamase, the synthesis of beta-galactosidase encoded by the fused genes also ceased transiently upon heat shock. It is concluded that the heat shock-induced repression of the amp gene occurs at the initiation step of translation. As far as the present study is concerned, the minimum DNA segment responsible for the repression is AT TGA AAA AGG AAG AGT ATG AG, which includes the Shine-Dalgarno sequence (AAGGA) and the initiation codon (ATG).  相似文献   

7.
T. Stearns  D. Botstein 《Genetics》1988,119(2):249-260
Mutations in genes of Saccharomyces cerevisiae that code for proteins that interact with beta-tubulin were sought by screening for unlinked mutations that fail to complement mutations in the single beta-tubulin-encoding gene (TUB2). Among the first three noncomplementing mutations examined, two are linked to TUB2 while one is unlinked. The unlinked mutation was shown to be a conditional-lethal allele of the major alpha-tubulin-encoding gene (TUB1) and represents the first such mutation in that gene. The tub1-1 mutation itself causes a cold-sensitive cell-cycle arrest, and confers supersensitivity to the antimicrotubule drug benomyl. These phenotypes occur in the presence of a wild-type copy of the minor alpha-tubulin-encoding gene, TUB3; the combination of tub1-1 and a tub3 null mutation is inviable in haploids. Through further application of this method, new mutations in TUB2 and TUB3 were isolated as unlinked noncomplementers of tub1-1. The noncomplementation between tub1 and tub2 mutations is gene specific and allele specific, suggesting that the phenotype is due to an interaction at the protein level. We conclude that isolation of unlinked noncomplementing mutations is likely to be a generally useful method for isolating mutations in interacting gene products.  相似文献   

8.
P. Haffter  T. W. McMullin    T. D. Fox 《Genetics》1990,125(3):495-503
Translation of the Saccharomyces cerevisiae mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the products of at least three nuclear genes, PET122, PET494 and PET54. pet122 mutations that remove 24-67 amino acid residues from the carboxyterminus of the gene product were found to be suppressed by unlinked nuclear mutations. These unlinked suppressors fail to suppress both a pet122 missense mutation and a complete pet122 deletion. One of the suppressor mutations causes a heat-sensitive nonrespiratory growth phenotype in an otherwise wild-type strain and reduces translation of all mitochondrial gene products in cells grown at high temperature. This suppressor maps to a newly identified gene on chromosome XV termed PET123. The sequence of a DNA fragment carrying PET123 contains one major open reading frame encoding a basic protein of 318 amino acids. Inactivation of the chromosomal copy of PET123 by interruption of this open reading frame causes cells to become rho- (sustain large deletions in their mtDNA). This phenotype is characteristic for null alleles of genes whose products are essential for general mitochondrial protein synthesis. Thus our data strongly suggest that the PET123 protein is a component of the mitochondrial translation apparatus that interacts directly with the coxIII-mRNA-specific translational activator PET122.  相似文献   

9.
We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: the gim null mutants are synthetically lethal with tub4-1 and super-sensitive towards the microtubule-depolymerizing drug benomyl. All except Deltagim4 are cold-sensitive and their microtubules disassemble at 14 degrees C. The Gim proteins have one function related to alpha-tubulin and another to Tub4p, supported by the finding that the benomyl super-sensitivity is caused by a reduced level of alpha-tubulin while the synthetic lethality with tub4-1 is not. In addition, GIM1/YKE2 genetically interacts with two distinct classes of genes, one of which is involved in tubulin folding and the other in microtubule nucleation. We show that the Gim proteins are important for Tub4p function and bind to overproduced Tub4p. The mammalian homologues of GIM1/YKE2 and GIM2/PAC10 rescue the synthetically lethal phenotype with tub4-1 as well as the cold-sensitivity and benomyl super-sensitivity of the yeast deletion mutants. We suggest that the Gim proteins form a protein complex that promotes formation of functional alpha- and gamma-tubulin.  相似文献   

10.
11.
Aquifex aeolicus leucyl-tRNA synthetase is the only known heterodimeric LeuRS, consisting of two subunits with molecular masses of 74.0 and 33.5 kDa, and named alphabeta-LeuRS. The gene encoding alpha subunit was cloned into pSBET-b vector. Synthetic oligonucleotide encoding six histidine residues was also inserted in front of alpha subunit. PSBET-b vector contains argU gene, which encodes a rare Escherichia coli tRNA(Arg)(AGA/AGG). The argU gene helps A. aeolicus LeuRS, which contains AGA/AGG codons in exceptionally high frequency, express well in E. coli. The gene encoding beta subunit was inserted into pET-15b vector. E. coli BL21-CodonPlus (DE3) cells were transformed with the two recombinant plasmids to produce alphabeta-LeuRS with a His6 tag at the N-terminus of alpha subunit. The enzyme was purified by affinity chromatography on Ni-NTA Superflow. About 7 mg purified alphabeta-LeuRS was obtained from 250 ml culture. The His6-tag at the N-terminus did not affect the aminoacylation activity of the enzyme.  相似文献   

12.
A comprehensive set of clustered charged-to-alanine mutations was generated that systematically alter TUB1, the major alpha-tubulin gene of Saccharomyces cerevisiae. A variety of phenotypes were observed, including supersensitivity and resistance to the microtubule-destabilizing drug benomyl, lethality, and cold- and temperature-sensitive lethality. Many of the most benomyl-sensitive tub1 alleles were synthetically lethal in combination with tub3Delta, supporting the idea that benomyl supersensitivity is a rough measure of microtubule instability and/or insufficiency in the amount of alpha-tubulin. The systematic tub1 mutations were placed, along with the comparable set of tub2 mutations previously described, onto a model of the yeast alpha-beta-tubulin dimer based on the three-dimensional structure of bovine tubulin. The modeling revealed a potential site for binding of benomyl in the core of beta-tubulin. Residues whose mutation causes cold sensitivity were concentrated at the lateral and longitudinal interfaces between adjacent subunits. Residues that affect binding of the microtubule-binding protein Bim1p form a large patch across the exterior-facing surface of alpha-tubulin in the model. Finally, the positions of the mutations suggest that proximity to the alpha-beta interface may account for the finding of synthetic lethality of five viable tub1 alleles with the benomyl-resistant but otherwise entirely viable tub2-201 allele.  相似文献   

13.
The TUP1 and CYC8 (= SSN6) genes of Saccharomyces cerevisiae play a major role in glucose repression. Mutations in either TUP1 or CYC8 eliminate or reduce glucose repression of many repressible genes and induce other phenotypes, including flocculence, failure to sporulate, and sterility of MAT alpha cells. The TUP1 gene was isolated in a screen for genes that regulate mating type (V.L. MacKay, Methods Enzymol. 101:325-343, 1983). We found that a 3.5-kb restriction fragment was sufficient for complete complementation of tup1-100. The gene was further localized by insertional mutagenesis and RNA mapping. Sequence analysis of 2.9 kb of DNA including TUP1 revealed only one long open reading frame which predicts a protein of molecular weight 78,221. The predicted protein is rich in serine, threonine, and glutamine. In the carboxyl region there are six repeats of a pattern of about 43 amino acids. This same pattern of conserved residues is seen in the beta subunit of transducin and the yeast CDC4 gene product. Insertion and deletion mutants are viable, with the same range of phenotypes as for point mutants. Deletions of the 3' end of the coding region produced the same mutant phenotypes as did total deletions, suggesting that the C terminus is critical for TUP1 function. Strains with deletions in both the CYC8 and TUP1 genes are viable, with phenotypes similar to those of strains with a single deletion. A deletion mutation of TUP1 was able to suppress the snf1 mutation block on expression of the SUC2 gene encoding invertase.  相似文献   

14.
15.
X-linked hyper-IgM syndrome is a rare immunodeficiency disorder resulting from mutations in the gene encoding the CD40 ligand (CD154) molecule. These mutations are very heterogeneous, ranging from a single point mutation to a large deletion in the open reading frame. To investigate the molecular mechanisms that are responsible for the functional defect of these mutants, we examined the biochemical properties of 14 hyper-IgM-related CD154 mutant proteins produced by transient expression in COS7 cells. We show that deletion mutants lacking a significant portion of the tumor necrosis factor homologous domain cannot be stably produced. In contrast, point mutants can be detected as oligomers. Surprisingly, gene products of two point mutants, Thr-211 --> Asp and Met-36 --> Arg, can bind to the receptor, CD40. For Thr-211 --> Asp variant, it is comparable to the wild-type protein in its surface expression level, biochemical structure, and functional activities. Thus, it appears that this mutation is a polymorphism of CD154 gene. For Met-36 --> Arg variant, although it is interactive with CD40, it has a much lower surface expression level than wild-type protein. We propose that Met-36 --> Arg mutant represents a prototype of a defective CD154 family whose low cell surface expression of intrinsically active protein is simply insufficient to trigger productive signals through CD40.  相似文献   

16.
Arginine is coded for by CGN (N = G, A, U, C), AGA and AGG. In Escherichia coli there is little tRNA for AGA and AGG and the use of these codons is strongly avoided in virtually all genes. Recently, we demonstrated that the presence of tandem AGA or AGG codons in mRNA causes frameshifts with high frequency. Here, we show that phaseshifts can be suppressed when cells are transformed with the gene for tRNA(T4Arg) or E. coli tRNA(argU,Arg) demonstrating that such errors are the result of tRNA depletion. Bacteriophage T4 encoded tRNA(Arg) (anticodon UCU) corrects shifts at AGA-AGA but not at AGG-AGG, suggesting that this tRNA can only read AGA. Similarly, comparison of the translational efficiencies in an argU (Ts) mutant and in its isogenic wild type parent indicates that argU tRNA (anticodon UCU) reads AGA but not AGG. An argU (Ts) mutant barely reads through AGA-AGA at 42 degrees C but translation of AGG-AGG is hardly, if at all, affected. Overexpression of argU+ relaxes the codon specificity. The thermosensitive mutant in argU, previously called dnaY because it is defective in DNA replication, can be complemented for growth by the gene for tRNA(T4Arg). This implies that the sole function of the argU gene product is to sustain protein synthesis and that its role in replication is probably indirect.  相似文献   

17.
18.
The mmd1 mutation causes temperature-sensitive growth and defects in mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. In mutant cells, mitochondria aggregate at the two cell ends, with increased aggregation at elevated temperatures. Microtubules, which mediate mitochondrial positioning in fission yeast, seem normal in mmd1 cells at permissive temperature and after several hours at the nonpermissive temperature but display aberrant organization after prolonged periods at 37 degrees C. Additionally, cells harboring both mmd1 and ban5-4, a temperature-sensitive allele of alpha2-tubulin, display synthetic defects in growth and mitochondrial distribution. The mmd1 mutation maps to an open reading frame encoding a novel 35.7-kDa protein. The Mmd1p sequence features repeating EZ-HEAT motifs and displays high conservation with uncharacterized homologues found in a variety of organisms. Saccharomyces cerevisiae cells depleted for their MMD1 homologue show increased sensitivity to the antimicrotubule drug benomyl, and the S. cerevisiae gene complemented the S. pombe mutation. Mmd1p was localized to the cytosol. Mmd1p is the first identified component required for the alignment of mitochondria along microtubules in fission yeast.  相似文献   

19.
When present on a multicopy plasmid, a gene from a Saccharomyces cerevisiae genomic library suppresses the temperature-sensitive cdc7-1 mutation. The gene was identified as DBF4, which was previously isolated by complementation in dbf4-1 mutant cells and is required for the G1----S phase progression of the cell cycle. DBF4 has an open reading frame encoding 695 amino acid residues and the predicted molecular mass of the gene product is 80 kD. The suppression is allele-specific because a CDC7 deletion is not suppressed by DBF4. Suppression is mitosis-specific and the sporulation defect of cdc7 mutations is not suppressed by DBF4. Conversely, CDC7 on a multicopy plasmid suppresses the dbf4-1, -2, -3 and -4 mutations but not dbf4-5 and DBF4 deletion mutations. Furthermore, cdc7 mutations are incompatible with the temperature-sensitive dbf4 mutations. These results suggest that the CDC7 and DBF4 polypeptides interact directly or indirectly to permit initiation of yeast chromosome replication.  相似文献   

20.
Mutations at the Escherichia coli prlC locus suppress the export defect of certain lamB signal sequence mutations. The Salmonella typhimurium opdA gene encodes an endoprotease that can participate in the catabolism of certain peptides and is required for normal development of phage P22. Plasmids carrying either the wild-type (pTC100 prlC+) or suppressor alleles of prlC complemented all phenotypes associated with an S. typhimurium opdA mutation. A plasmid carrying an amber mutation in prlC [prlC31(AM)] was unable to complement except in an amber suppressor background. Tn1000 insertions which eliminated the ability of pTC100 (prlC+) to complement opdA mapped to the region of the plasmid shown by deletion analysis and subcloning to contain prlC. The nucleotide sequence of a 2.7-kb fragment including this region was determined, revealing an open reading frame encoding a 77-kDa protein. The sequences of this open reading frame and its putative promoter region were very similar (84% nucleotide sequence identity and 95% amino acid identity) to those of S. typhimurium opdA, showing that these genes are homologs. The nucleotide sequence of the prlC1 suppressor allele was determined and predicts an in-frame duplication of seven amino acids, providing further confirmation that the prlC suppressor phenotype results from changes in the endopeptidase OpdA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号