共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional conservation of Dhh1p,a cytoplasmic DExD/H-box protein present in large complexes 下载免费PDF全文
Tseng-Rogenski SS Chong JL Thomas CB Enomoto S Berman J Chang TH 《Nucleic acids research》2003,31(17):4995-5002
The DHH1 gene in the yeast Saccharomyces cerevisiae encodes a putative RNA helicase of remarkable sequence similarity to several other DExD/H-box proteins, including Xp54 in Xenopus laevis and Ste13p in Schizosaccharomyces pombe. We show here that over-expression of Xp54, an integral component of the stored messenger ribonucleoprotein (mRNP) particles, can rescue the loss of Dhh1p in yeast. Localization and sedimentation studies showed that Dhh1p exists predominantly in the cytoplasm and is present in large complexes whose sizes appear to vary according to the growth stage of the cell culture. In addition, deletion of dhh1, when placed in conjunction with the mutant dbp5 and ded1 alleles, resulted in a synergistically lethal effect, suggesting that Dhh1p may have a role in mRNA export and translation. Finally, similar to Ste13p, Dhh1p is required for sporulation in the budding yeast. Taken together, our data provide evidence that the functions of Dhh1p are conserved through evolution. 相似文献
2.
A mutation at nucleotide 1101 of Sindbis virus ts11 nsP1 caused temperature-sensitive negative-strand synthesis and suppressed the 24R phenotype, which is caused by a mutation in nsP4. Nonstructural proteins synthesized and accumulated by ts11 at 40 degrees C did not cause the reactivation of negative-strand synthesis upon return to 30 degrees C and did not prevent the formation of new replication complexes at 30 degrees C. 相似文献
3.
The Ded1 protein (Ded1p), a member of the DEAD-box family, has recently been shown to be essential for translation initiation in Saccharomyces cerevisiae. Here, we show that Ded1p purified from Escherichia coli has an ATPase activity, which is stimulated by various RNA substrates. Using an RNA strand-displacement assay, we show that Ded1p has also an ATP-dependent RNA unwinding activity. Hydrolysis of ATP is required for this activity: the replacement of ATP by a nonhydrolyzable analog or a mutation in the DEAD motif abolishing ATPase activity results in loss of RNA unwinding. We find that cells harboring a Ded1 protein with this mutated DEAD motif are nonviable, suggesting that the ATPase and RNA helicase activities of this protein are essential to the cell. Finally, RNA binding measurements indicate that the presence of ATP, but not ADP, increases the affinity of Ded1p for duplex versus single-stranded RNA; we discuss how this differential effect might drive the unwinding reaction. 相似文献
4.
5.
Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins 总被引:3,自引:0,他引:3 下载免费PDF全文
The Prp2 protein of Saccharomyces cerevisiae is an RNA-dependent ATPase required before the first transesterification reaction in pre-mRNA splicing. Prp2 binds to the spliceosome in the absence of ATP and is released following ATP hydrolysis. We determined what regions in Prp2 are essential for release from the spliceosome by analyzing dominant negative mutants in vivo and in vitro. We made mutations in conserved motif II (DExH) and motif VI (QRxGR) of the helicase (H) domain. Mutations that inactivated PRP2 had a dominant negative phenotype when overexpressed in vivo. To test whether mutations outside of the H domain could confer a dominant negative phenotype, we mutagenized a GAL1-PRP2 construct and screened for mutants unable to grow on galactose-containing media. Five dominant negative mutants were characterized; three mapped within the H domain and two mapped downstream of motif VI, indicating that an extended helicase domain is required for release of Prp2 from the spliceosome. Most mutants stalled in the spliceosome in vitro. However, not all mutants that were dominant negative in vivo were dominant negative in vitro, indicating that multiple mechanisms may cause a dominant negative phenotype. Structural modeling of the H domain of Prp2 suggests that mutants map to a cleft region found in helicases of known structure. 相似文献
6.
Zhao R Shen J Green MR MacMorris M Blumenthal T 《Structure (London, England : 1993)》2004,12(8):1373-1381
UAP56 is an essential eukaryotic pre-mRNA splicing factor and mRNA export factor. The mechanisms of its functions are not well understood. We determined the crystal structures of the N- and C-terminal domains of human UAP56 (comprising 90% of the full-length UAP56) at 1.9 A resolution. The two domains each have a RecA-like fold and are connected by a flexible linker. The overall fold of each domain is highly similar to the corresponding domains of eIF4A (a prototypic DExD/H-box protein), with differences at the loops and termini. This structural similarity suggests that UAP56 is likely to possess ATPase and helicase activity similar to eIF4A. The NTP binding pocket of UAP56 is occupied by a citrate ion, mimicking the phosphates of NTP and retaining the P loop in an open conformation. The crystal structure of the N-terminal domain of UAP56 also reveals a dimer interface that is potentially important for UAP56's function. 相似文献
7.
The 5' untranslated region of alfalfa mosaic virus RNA 1 is involved in negative-strand RNA synthesis 下载免费PDF全文
The three genomic RNAs of alfalfa mosaic virus each contain a unique 5' untranslated region (5' UTR). Replacement of the 5' UTR of RNA 1 by that of RNA 2 or 3 yielded infectious replicons. The sequence of a putative 5' stem-loop structure in RNA 1 was found to be required for negative-strand RNA synthesis. A similar putative 5' stem-loop structure is present in RNA 2 but not in RNA 3. 相似文献
8.
9.
De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide,primer, and template parameters 下载免费PDF全文
Nomaguchi M Ackermann M Yon C You S Padmanabhan R Padmanbhan R 《Journal of virology》2003,77(16):8831-8842
By using a purified dengue virus RNA-dependent RNA polymerase and a subgenomic 770-nucleotide RNA template, it was shown previously that the ratio of the de novo synthesis product to hairpin product formed was inversely proportional to increments of assay temperatures (20 to 40 degrees C). In this study, the components of the de novo preinitiation complex are defined as ATP, a high concentration of GTP (500 micro M), the polymerase, and the template RNA. Even when the 3'-terminal sequence of template RNA was mutated from -GGUUCU-3' to -GGUUUU-3', a high GTP concentration was required for de novo initiation, suggesting that high GTP concentration plays a conformational role. Furthermore, utilization of synthetic primers by the polymerase indicated that AGAA is the optimal primer whereas AG, AGA, and AGAACC were inefficient primers. Moreover, mutational analysis of the highly conserved 3'-terminal dinucleotide CU of the template RNA indicated that change of the 3'-terminal nucleotide from U to C reduced the efficiency about fivefold. The order of preference for the 3'-terminal nucleotide, from highest to lowest, is U, A - G, and C. However, change of the penultimate nucleotide from C to U did not affect the template activity. A model consistent with these results is that the active site of the polymerase switches from a "closed" form, catalyzing de novo initiation through synthesis of short primers, to an "open" form for elongation of a double-stranded template-primer. 相似文献
10.
11.
Stable RNA structures can repress RNA synthesis in vitro by the brome mosaic virus replicase 下载免费PDF全文
A 15-nucleotide (nt) unstructured RNA with an initiation site but lacking a promoter could direct the initiation of RNA synthesis by the brome mosaic virus (BMV) replicase in vitro. However, BMV RNA with a functional initiation site but a mutated promoter could not initiate RNA synthesis either in vitro or in vivo. To explain these two observations, we hypothesize that RNA structures that cannot function as promoters could prevent RNA synthesis by the BMV RNA replicase. We documented that four different nonpromoter stem-loops can inhibit RNA synthesis from an initiation-competent RNA sequence in vitro. Destabilizing these structures increased RNA synthesis. However, RNA synthesis was restored in full only when a BMV RNA promoter element was added in cis. Competition assays to examine replicase-RNA interactions showed that the structured RNAs have a lower affinity for the replicase than do RNAs lacking stable structures or containing a promoter element. The results characterize another potential mechanism whereby the BMV replicase can specifically recognize BMV RNAs. 相似文献
12.
Helicase and capping enzyme active site mutations in brome mosaic virus protein 1a cause defects in template recruitment, negative-strand RNA synthesis, and viral RNA capping 下载免费PDF全文
Brome mosaic virus (BMV) encodes two RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and 2a, which is related to polymerases. BMV 1a and 2a can direct virus-specific RNA replication in the yeast Saccharomyces cerevisiae, which reproduces the known features of BMV replication in plant cells. We constructed single amino acid point mutations at the predicted capping and helicase active sites of 1a and analyzed their effects on BMV RNA3 replication in yeast. The helicase mutants showed no function in any assays used: they were strongly defective in template recruitment for RNA replication, as measured by 1a-induced stabilization of RNA3, and they synthesized no detectable negative-strand or subgenomic RNA. Capping domain mutants divided into two groups. The first exhibited increased template recruitment but nevertheless allowed only low levels of negative-strand and subgenomic mRNA synthesis. The second was strongly defective in template recruitment, made very low levels of negative strands, and made no detectable subgenomes. To distinguish between RNA synthesis and capping defects, we deleted chromosomal gene XRN1, encoding the major exonuclease that degrades uncapped mRNAs. XRN1 deletion suppressed the second but not the first group of capping mutants, allowing synthesis and accumulation of large amounts of uncapped subgenomic mRNAs, thus providing direct evidence for the importance of the viral RNA capping function. The helicase and capping enzyme mutants showed no complementation. Instead, at high levels of expression, a helicase mutant dominantly interfered with the function of the wild-type protein. These results are discussed in relation to the interconnected functions required for different steps of positive-strand RNA virus replication. 相似文献
13.
14.
AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent alpha-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes. 相似文献
15.
P Lindhout L Neeleman H Van Tol L Van Vloten-Doting 《European journal of biochemistry》1985,152(3):625-631
In the presence of plant tRNAs the full-length translation product of alfalfa mosaic virus RNA 1 is produced in rabbit reticulocytes only at low mRNA concentration. At higher mRNA concentration translation is restricted to the 5' half of RNA 1. At high mRNA concentration the full-length product can be formed when additional plant tRNA and glutamine are supplied to the translation mixture. In contrast, in the presence of yeast or calf liver tRNA the translation pattern of alfalfa mosaic virus RNA 1 always results in the synthesis of the full-length product. Pulse-chase experiments in the presence of plant tRNAs show that the ribosomes pause at several positions in the 5' half of RNA 1. The pausing time is different at the different 'halting places'. Protein synthesis is resumed upon addition of glutamine, even when the addition is delayed for more than 3 h after the start of protein synthesis. Only one tRNA species, purified from wheat germ or tobacco, could promote full-length translation of RNA 1. This tRNA can be charged with glutamine. Analysis of the position of glutamine codons on RNA 1 shows a correlation between the positions of the CAA codons and the halting places of the ribosomes. The CAA codon (for any other codon) on its own cannot be responsible for the pausing of the ribosomes, since a variety of RNAs, known to contain all sense codons, are translated efficiently in rabbit reticulocyte lysates in the presence of plant tRNAs. Apparently other elements can restrict decoding of normal codons during protein chain elongation. 相似文献
16.
17.
Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation 下载免费PDF全文
Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5' and 3' noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation. 相似文献
18.
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed. 相似文献
19.
A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s 总被引:11,自引:3,他引:11 下载免费PDF全文
《The Journal of cell biology》1995,129(4):979-988
Eukaryotic cells contain multiple Hsp70 proteins and DnaJ homologues. The partnership between a given Hsp70 and its interacting DnaJ could, in principle, be determined by their cellular colocalization or by specific protein-protein interactions. The yeast SCJ1 gene encodes one of several homologues of the bacterial chaperone DnaJ. We show that Scj1p is located in the lumen of the endoplasmic reticulum (ER), where it can function with Kar2p (the ER-lumenal BiP/Hsp70 of yeast). The region common to all DnaJ homologues (termed the J domain) from Scj1p can be swapped for a similar region in Sec63p, which is known to interact with Kar2p in the ER lumen, to form a functional transmembrane protein component of the secretory machinery. Thus, Kar2p can interact with two different DnaJ proteins. On the other hand, J domains from two other non-ER DnaJs, Sis1p and Mdj1p, do not function when swapped into Sec63p. However, only three amino acid changes in the Sis1p J domain render the Sec63 fusion protein fully functional in the ER lumen. These results indicate that the choice of an Hsp70 partner by a given DnaJ homologue is specified by the J domain. 相似文献
20.
《Cell biology international reports》1981,5(11):1019-1026
Exponentially multiplying cultures of the fission yeast Schizosaccharomyces pombe were treated with a peptide factor obtained from the protozoan Tetrahymena pyriformis. It was found that the rate of RNA synthesis was reduced by this factor, whereas cell multiplication and protein synthesis were unaffected. These results confirm previous results obtained with protoplasts of the same yeast. 相似文献