首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

4.
The myeloproliferative sarcoma virus is molecularly related to the Moloney sarcoma virus (Pragnell et al., J. Virol. 38:952-957, 1981), but causes both fibroblast transformation in vitro and leukemic changes--including spleen focus formation--in adult mice. The fibroblast transforming properties of myeloproliferative sarcoma virus were used to select viral temperature-sensitive mutants at 39.5 degrees C, the nonpermissive temperature. These mutants are temperature sensitive in the maintenance of the transformed state. This was also shown by cytoskeletal changes of the infected cells at permissive and nonpermissive temperatures. Viruses released from cells maintained at both the permissive and nonpermissive temperature are temperature sensitive in fibroblast transformation functions. All temperature-sensitive mutants show only a low reversion rate to wild-type transforming function. The myeloproliferative sarcoma virus temperature-sensitive mutants are inefficient in causing leukemic transformation (spleen enlargement, focus formation) in mice at the normal temperature. A method to maintain a low body temperature (33 to 34 degrees C) in mice is described. One temperature-sensitive mutant was checked at low body temperature and did not induce leukemia. These data thus indicate that the same or related viral functions are responsible for hematopoietic and fibroblast transformation.  相似文献   

5.
Nine temperature-sensitive (ts) mutants of nonattenuated Edmonston strain measles virus were isolated from wild-type virus which was grown in the presence of 5-fluorouracil. Adsorption, temperature shift, and complementation experiments indicated that all these mutants were restricted at an intracellular stage of infection. However, all the mutants were more rapidly inactivated at 41 C than was wild-type virus, suggesting that the ts product of each mutant either influences or is a structural component of the virus. Three complementation groups were found to be represented among the mutants. Group A contained one mutant and it did not induce synthesis of detectable amounts of viral antigen at the nonpermissive temperature (39 C). Group B consisted of six mutants which did not induce viral antigen synthesis at 39 C and one mutant which did. Group C was represented by one mutant and it induced viral antigen synthesis at 39 C. The two mutants which induced sythesis of viral antigen also induced synthesis of relatively small amounts of virus-specific RNA at 39 C. These mutants, while producing cytoplasmic and nuclear accumulations of viral antigen at 39 C, were restricted in production of syncytia and hemadsorption. All the mutants were less neurovirulent than wild-type virus, as indicated by their inability to produce acute disease in newborn hamsters.  相似文献   

6.
Eight transformation-defective, temperature-sensitive (ts) mutants of the Prague strain of Rous sarcoma virus, subgroup A, have been isolated after mutagenesis with 5-bromodeoxyuridine followed by selection on the basis of focus tests. Five of these mutants, ts GI201, GI202, GI203, GI204, and GI205, exhibit properties like most previously reported isolates in that they show a temperature-sensitive response to each of a variety of transformation-specific parameters tested. Interestingly, GI201, in addition to the temperature-sensitive defect, carries a lesion that was observed as a nonconditional loss of expression of plasminogen activator protease. Three mutants, ts GI251, GI252, and GI253 have been disignated partial transformation-defective (PTD) mutants since they behave as ts mutants according to some tests for transformation and as wild type according to others. These three mutants fail to form foci at the nonpermissive temperature (41 degrees C) and art nontumorigenic in 3-week-old chickens (body temperature, 42 degrees C). The agglutinability by concanavalin A of cells infected with these mutants shows a definite temperature sensitivity, as do the rate of 2-deoxyglucose uptake and the disappearance of the 250, 000-dalton normal cell glycoprotein (large, external, transformation sensitive [LETS]). Although the PTD mutant-infected cells, unlike cells infected with other transformation mutants, exhibit a cell-bound plasminogen activator protease at the nonpermissive temperature, this activator is not detectable as a free protease in the medium, as it is with wild-type, virus-infected cells. The PTD mutants behave like the wild-type parent in their ability to induce transformed growth properties in the infected cells, i.e., growth beyond normal cell saturation density with or without serum-supplemented medium and growth leading to colony formation in soft-agar- or methyl cellulose-containing suspension media.  相似文献   

7.
Stocks of Rous sarcoma virus Bryan strain were mutagenized using a bromodeoxyuridine treatment immediately after infection. Thirty temperature-sensitive (ts) mutants defective in transformation (td) were isolated by a replica plating technique. Twenty of these mutants were preliminarily characterized and found to be defective in late functions related to transformation. These mutants were used in experiments of cooperative transformation with four Prague strain td ts mutants of different co-transformation group. A small number of Bryan ts mutants were found to cooperate with some of the Prague mutants in transforming chicken embryo cells at the nonpermissive temperature. However, the amount of co-transformation observed was lower than that observed with cooperating Prague ts mutants and no clear-cut pattern of cotransformation was obtained in Prague and Bryan crosses. Indirect evidence indicates that cooperative transformation is the result of recombination events.  相似文献   

8.
Five temperature-sensitive mutants of simian virus 40 containing two temperature-sensitive mutations were isolated. The double mutant of the A and D complementation groups, like the D mutants, failed to complement by conventional complementation analysis and did not induce host DNA synthesis at 40 degrees C. However, under conditions that suppressed the D defect, the A:D double mutant expressed only the A defect. Thus, viral DNA replication dropped rapidly after this mutant was shifted from permissive to restrictive temperatures. The A:D double mutant failed to transfrom at the restrictive temperature when subconfluent Chinese hamster lung monolayers were used. Double mutants of A:B, A:C, and A:BC complementation groups, like their A parent, were defective in viral DNA replication, in the induction of host DNA synthesis and in the transformation of secondary Chinese hamster lung cells at the nonpermissive temperature.  相似文献   

9.
M V Haspel  R Duff    F Rapp 《Journal of virology》1975,16(4):1000-1009
Twenty-four genetically stable temperature-sensitive mutants of measles virus were isolated after mutangenesis by 5-azacytidine, 5 fluorouracil, or proflavine. The restricted replication of all mutants at 39 C was blocked subsequent to cell penetration and could not be attributed to heat inactivation of virus infectivity. Complementation analysis was made possible through the use of poly-L-ornithine. The members of one complementation group exhibited wild-type RNA synthesis at the nonpermissive temperature and induced the synthesis of virus antigens. These mutants were found defective in both hemolysin antigen synthesis and cell fusion "from within," supporting the unitary hypothesis for these functions. The members of the other two complementation groups synthesized neither virion RNA nor detectable virus antigens at the nonpermissive temperature.  相似文献   

10.
Sixteen temperature-sensitive mutants of Sendai virus were isolated from mutagenized stocks (10 mutants, designated numerically) and persistently infected cultures (6 mutants, designated alphabetically). Based on complementation tests, virion-associated activities, thermal inactivation, and viral RNA and hemadsorbing antigen synthesis as well as virion production in chick lung embryo cells at nonpermissive temperature, these mutants were divided into seven groups as follows. i) HANA group mutants (ts-5, -9, -10, -201), defective in hemagglutinin-neuraminidase protein, complementation group I. ii) F group mutants (ts-18, -108), defective in hemolytic and cell-fusing activity, complementation group II. iii) Ts-43, defective in RNA polymerase activity, complementation group III. iv) Ts-23, defective in RNA polymerase activity, interfered with the other mutants in complementation tests. v) Ts-25, defective in the incorporation of hemagglutinin-neuraminidase protein into the virion at the stage of virus assembly. vi) Ts-110, belongs to F group mutants on one hand, but is considered to carry another undetermined defect. vii) C group (carrier culture-borne group) mutants (ts-a, -b, -c, -d, -e, -f), defective lesion not yet determined and belong to neither complementation group I nor II. Assignment of mutants in groups iv), v), vi), and vii) to complementation groups could not be achieved.  相似文献   

11.
ts1 and ts7, the paralytogenic, temperature-sensitive mutants of Moloney murine leukemia virus (MoMuLV), together with their wild-type parent, MoMuLV-TB, were molecularly cloned. ts1-19, ts7-22, and wt-25, the infectious viruses obtained on transfection to NIH/3T3 cells of the lambda Charon 21A recombinants of ts1, ts7, and wt, were found to have retained the characteristics of their non-molecularly cloned parents. In contrast to the wt virus, ts1-19 and ts7-22 are temperature-sensitive, inefficient in the intracellular processing of Pr80env at the restrictive temperature, and able to induce paralysis in CFW/D mice. Like the non-molecularly cloned ts7, the ts7-22 virion was also shown to be heat labile. The heat lability of the ts7 virion distinguishes it from ts1. Endonuclease restriction mapping with 11 endonucleases demonstrated that the base composition of MoMuLV-TB differs from that of the standard MoMuLV, but no difference was detected between the molecularly cloned ts1 and ts7 genomes. However, ts1 and ts7 differ from MoMuLV in the loss or acquisition of four different restriction sites, whereas they differ from MoMuLV-TB in the loss or acquisition of three different restriction sites.  相似文献   

12.
One hundred temperature-sensitive mutants of vaccinia virus WR were isolated from virus that had been mutagenized with 5-bromodeoxyuridine or N-methyl-N'-nitro-N-nitrosoguanidine. A rapid screening procedure based on the ability of vaccinia virus to form plaques under liquid overlay medium was used to identify potential mutants among randomly picked plaque isolates or plaques preselected for their small size after temperature shift-up. The preselection technique resulted in a sixfold increase in the number of successful mutant isolations relative to the number of plaques picked. All of the mutants had efficiencies of plating at 39.5 degrees C relative to that at 33 degrees C of 10(-4) or less, and 33 of 40 produced 10% or less of the amount of virus at the nonpermissive temperature (39.5 degrees C) relative to that at the permissive temperature (33 degrees C). Experiments with the fluorescent DNA binding dye Hoechst 33258 demonstrated that 6 of the 100 mutants failed to form characteristic cytoplasmic DNA factories at 39.5 degrees C. To facilitate the functional grouping of such a large number of mutants, a rapid infectious center assay was developed. Thirty of the mutants were assigned to 16 or 17 complementation-recombination groups by using this assay. Recombination experiments have allowed the construction of a genetic map representing 22 mutants in 12 of these groups.  相似文献   

13.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

14.
Temperature-sensitive (ts) mutants of Newcastle disease virus have been isolated and characterized genetically (complementation), biochemically (RNA synthesis) and biologically (fusion from within and hemadsorption). Fifteen of these mutants have been divided into five complementation groups. Groups A (five mutants) and E (one mutant) are ts for RNA synthesis (RNA-) as well as for the other functions. Group B contains four RNA+ mutants of which one is ts for fusion, one for hemadsorption and two for neither function. Group C contains one RNA+ mutant which is a poor cell fuser. Group D contains two RNA+ mutants which are ts for fusion. In addition, two noncomplementing mutants (group BC) fail to complement both group B and group C mutants while exhibiting complementation with mutants in groups A, D, and E.  相似文献   

15.
Avian sarcoma virus UR2 and its associated helper virus, UR2AV , were molecularly cloned into lambda gtWES X lambda B by using unintegrated viral DNAs. One UR2 and several UR2AV clones were obtained. The UR2 DNA was subsequently cloned into pBR322. Both UR2 and UR2AV DNAs were tested for their biological activity by transfection onto chicken embryo fibroblasts. When cotransfected with UR2AV DNA, UR2 DNA was able to induce transformation of chicken embryo fibroblasts with a morphology similar to that of parental UR2 . UR2 -specific protein with kinase activity and UR2 -specific RNA were detected in the transfected cells. Transforming virus, UR2 ( UR2AV ), was produced from the doubly transfected cells. Five of the six UR2AV clones tested were also shown to be biologically active. The insert of the UR2 DNA clone is 3.4 kilobases in length and contains two copies of the long terminal repeat. Detailed restriction mapping showed that UR2 DNA shared with UR2AV DNA 0.8 kilobases of 5' sequence, including a portion of 5' gag, and 1.4 kilobases of 3' sequence, including a portion of 3' env. The UR2 transforming sequence, ros, is ca. 1.2 kilobases. No significant homology was found between v-ros and the conserved regions of v-src, v-yes, or v- abl . By contrast, a significant homology was found between v-ros and v-fps. The v-fps-related sequence was mapped within a 300-base-pair sequence in the middle of ros.  相似文献   

16.
Mycoplasma virus L3 virions are morphologically similar to coliphage T7, contain linear double-stranded DNA of about 39 kilobase pairs, and produce a nonlytic cytocidal infection in Acholeplasma laidlawii host cells. Following nitrous acid mutagenesis, ninety-eight L3 temperature-sensitive (ts) mutants were isolated from a total of 57,000 plaque-forming units (PFU), using 37 degrees C as the permissive temperature and 41 degrees C as the nonpermissive temperature, with reversion frequencies of 10(-5) to 10(-8). Complementation tests allowed fifty-seven of the L3 ts mutants to be placed into twenty-one complementation groups. In mixed infections, recombination frequencies between mutants in different complementation groups were 10(-2) to less than 10(-6). Studies of protein synthesis in L3-infected cells showed synthesis of about twenty virus-specific proteins, including ten L3 virion proteins. After infection with L3 ts mutants from each complementation group, several different patterns of cell- and virus-specific protein synthesis were observed.  相似文献   

17.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

18.
The proteins synthesized in chicken embryo fibroblasts infected with wild-type Semliki Forest virus and 16 temperature-sensitive mutants derived from it were studied by polyacrylamide gel electrophoresis. In addition to the structural proteins, five nonvirion proteins (NVP) with molecular weight of 130,000, 97,000, 86,000, 78,000 and 62,000 were found varying amounts in cells infected with the different RNA+ mutants and also in the wild-type-infected cells. Pulse-chase experiments suggested that NVP 130, NVP 97, NVP 86, and NVP 62 are precursors presumably of the structural proteins. The amount of NVP 78 was not affected by the chase, and it may represent a translational product of the nonstructural part of the genome. The NVP 130 was shown to be a common precursor of the structural proteins by tryptic peptide mapping. Kinetic evidence from one of the mutants (ts-3) suggested that NVP 86 is one of the precursors of the capsid protein. A common feature of all the RNA+mutants was the inability to cleave the NVP 62 into E2 and E3, suggesting that this cleavage is a crucial reaction in the virus maturation.  相似文献   

19.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号