首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen is a popular biomaterial in many specific biological interactions as well as a structural element. In this work, the recombinant collagen-like proteins were synthesized using Escherichia coli expression system. A foldon sequence, GYIPEAPRDGQAYVRKDGEWVLLSTFL, derived from the native T4 phage fibritin was incorporated at the C-terminal of collagen-like protein molecules to stabilize the triple helix formed in the proteins. The differential scanning calorimetry and thermogravimetric analysis measurements showed that the thermostability of the recombinant collagen-like proteins was significantly improved when compared with those without the foldon sequence at the C-terminal. Fourier transform infrared and scanning electron microscopy observations indicated that the collagen-like proteins forms the triple helix structure and prefer to aggregate as fibrils, same as the native collagen. Moreover, the mice fibroblasts L929 cells could attach and grew very well on the recombinant collage-like proteins. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cell biocompatibility of collagen-like proteins produced in this work was even better than that of native collagen, suggesting that the collagen-like proteins may be a satisfactory candidate for the future applications as a biomaterial.  相似文献   

2.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

3.
There is a confusion in the application of circular dichroism (CD) spectroscopy in analyzing collagen's structure for the overlapping of the spectral shapes and positions of the collagen triple helix and poly(proline-II)-like structure. The unique repetitive sequence of the collagen triple helix is susceptible to misalignment during the spontaneous assembly. Such misaligned structures are usually difficult to be characterized by CD or NMR spectroscopy. Here, RP-HPLC was developed as a conformational characterization technique for synthetic collagen-like peptides based on the different hydrophobicities exhibited by the triple-helical and unassembled peptides. RP-HPLC was also used to study thermal transitions and to measure melting point temperatures (Tm) of the collagen-like peptides.  相似文献   

4.
The collagen-like polytripeptide (hydroxyproline-proline-glycine)10 was synthesized with a solid-phase procedure. Analytical ultracentrifugation indicated that the peptide in aqueous solution at 6 °C had a molecular weight of 2550, the expected size of a single chain. The peptide had a relatively small negative optical rotation at 578 nm, and it did not show a thermal transition as is seen with collagen or collagen-like polytripeptides which form triple helices. At low temperatures in aqueous solution, the circular dichroism spectrum was similar to that of triple-helical collagen and collagen-like peptides in that there was a positive peak at 224 nm and a negative peak at 200 nm. The amplitudes of the peaks, however, were considerably less than the peaks obtained with triple-helix proteins and peptides. Since (proline-proline-glycine)10 was triple helical under the same conditions, the results demonstrated that hydroxyproline in the X-position of the repeating -glycine-X-Y- sequences decreases rather than increases, the thermal stability of the triple helix. This positional specificity cannot be explained by any of the current models for the structure of the triple helix or any of the current proposals for how hydroxyproline stabilizes the structure.  相似文献   

5.
The recombinant transmembrane protein type XIII collagen is shown to reside on the plasma membrane of insect cells in a 'type II' orientation. Expressions of deletion constructs showed that sequences important for the association of three alpha1(XIII) chains reside in their N- rather than C-terminal portion. In particular, a deletion of residues 63-83 immediately adjacent to the transmembrane domain abolished the formation of disulfide-bonded trimers. The results imply that nucleation of the type XIII collagen triple helix occurs at the N-terminal region and that triple helix formation proceeds from the N- to the C-terminus, in opposite orientation to that of the fibrillar collagens. Interestingly, a sequence homologous to the deleted residues was found at the same plasma membrane-adjacent location in other collagenous transmembrane proteins, suggesting that it may be a conserved association domain. The type XIII collagen was secreted into insect cell medium in low amounts, but this secretion was markedly enhanced when the cytosolic portion was lacking. The cleavage occurred in the non-collagenous NC1 domain after four arginines and was inhibited by a furin protease inhibitor.  相似文献   

6.
Some details of the backbone dynamics in the collagen-like triple helix is discussed and the role of backbone dynamics in functioning collagen proteins is illustrated. On a series of oligotripeptides synthetic analogs of collagen formation of high-frequency vibrational backbone dynamics and low-frequency nonlinear backbone dynamics upon stepwise elongation of peptide chain have been described using infrared spectroscopy and hydrogen-exchange method. In the fully completed triple helix the level of high-frequency backbone dynamics is regulated firstly by contact interactions of adjacent atoms and chemical bounded groups, while the level of low-frequency large-amplitude backbone dynamics depends mainly on cooperative interactions attributed by conjugation of interpeptide hydrogen bonds. In native collagens the nonlinear large-amplitude dynamics following by non-denaturational micro-unfolding of the triple-helical structure appears to be under the natural selection control delivering an optimal condition for formation, functioning and utilization of collagen fibrils.  相似文献   

7.
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.  相似文献   

8.
In this work we describe the self-assembly of a collagen-like periodic mini-fibril from a recombinant triple helix. The triple helix, designated Col108, is expressed in Escherichia coli using an artificial gene and consists of a 378-residue triple helix domain organized into three pseudo-repeating sequence units. The peptide forms a stable triple helix with a melting temperature of 41 °C. Upon increases of pH and temperature, Col108 self-assembles in solution into smooth mini-fibrils with the cross-striated banding pattern typical of fibrillar collagens. The banding pattern is characterized by an axially repeating feature of ∼35 nm as observed by transmission electron microscopy and atomic force microscopy. Both the negatively stained and the positively stained transmission electron microscopy patterns of the Col108 mini-fibrils are consistent with a staggered arrangement of triple helices having a staggering value of 123 residues, a value closely connected to the size of one repeat sequence unit. A mechanism is proposed for the mini-fibril formation of Col108 in which the axial periodicity is instigated by the built-in sequence periodicity and stabilized by the optimized interactions between the triple helices in a 1-unit staggered arrangement. Lacking hydroxyproline residues and telopeptides, two factors implicated in the fibrillogenesis of native collagen, the Col108 mini-fibrils demonstrate that sequence features of the triple helical domain alone are sufficient to “code” for axially repeating periodicity of fibrils. To our knowledge, Col108 is the first designed triple helix to self-assemble into periodic fibrils and offers a unique opportunity to unravel the specific molecular interactions of collagen fibrillogenesis.  相似文献   

9.
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.  相似文献   

10.
The collagens are a family of animal proteins containing segments of repeated Gly-Xaa-Yaa (GXY) motifs that form a characteristic triple-helical structure. Genes encoding proteins with repeated GXY motifs have also been reported in bacteria and phages; however, it is unclear whether these prokaryotic proteins can form a collagen-like triple-helical structure. Here we used two recently identified streptococcal proteins, Scl1 and Scl2, containing extended GXY sequence repeats as model proteins. First we observed that prior to heat denaturation recombinant Scl proteins migrated as homotrimers in gel electrophoresis with and without SDS. We next showed that the collagen-like domain of Scl is resistant to proteolysis by trypsin. We further showed that circular dichroism spectra of the Scl proteins contained features characteristic of collagen triple helices, including a positive maximum of ellipticity at 220 nm. Furthermore the triple helices of Scl1 and Scl2 showed a temperature-dependent unfolding with melting temperatures of 36.4 and 37.6 degrees C, respectively, which resembles those seen for collagens. We finally demonstrated by electron microscopy that the Scl proteins are organized into "lollipop-like" structures, similar to those seen in human proteins with collagenous domains. This implies that the repeated GXY tripeptide motif is a structural indicator of collagen-like triple helices in proteins from such phylogenetically distant sources as bacteria and humans.  相似文献   

11.
12.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

13.
14.
Amino acid sequence of the triple-helical domain of human collagen type VI   总被引:9,自引:0,他引:9  
The complete amino acid sequence of the triple-helical domain of human collagen VI was deduced from sequences of appropriate cDNA clones and confirmed to about 50% by Edman degradation of tryptic peptides. This domain consists of three different peptide segments containing some 335-336 amino acid residues originating from central portions of the alpha 1 (VI), alpha 2(VI), and alpha 3(VI) chains, respectively. Sequence identity in the X/Y positions of the Gly-X-Y repeats is rather low (10-15%) between the chains. Peculiar features of these sequences include 3 cysteine residues about 50 (alpha 3(VI)) and 89 (alpha 1(VI), alpha 2(VI)) residues away from the N-terminus and several Gly-X-Y interruptions clustered in the C-terminal two-thirds of the triple helix. These structures are presumably required for cross-linking collagen VI oligomers and for super-coiling of triple helices in the dimers. Other features include 11 Arg-Gly-Asp sequences, some of which are likely to be used as cell-binding sites, and four Asn-X-Thr sequences, allowing N-linked glycosylation along the triple helix. Junctional areas close to the helix contain short, cysteine-rich segments which may seal the triple-helical domain through disulfide bond formation, endowing it with high stability. These features, together with a low sequence homology to fiber-forming and basement-membrane collagens, document the unique character of collagen VI, whose triple helix is specifically adjusted for forming microfibrils in tissues.  相似文献   

15.
Type IV collagen, a major structural component of basement membrane, has been characterized only in vertebrates. It is unique among the collagenous proteins in that it forms specific lattice networks by end-to-end interactions. In particular, in mammals the C-terminal noncollagenous domain (NCl) of collagen IV was shown to be one of the major cross-linking sites in the network assembly. Here, we give the first direct evidence of type-IV-related collagen in invertebrates by sequence analysis of cDNA and genomic DNA clones for the 3'-end of a previously characterized Drosophila collagen gene. The data describe the C-terminal 190 amino acid residues of the triple helix and the entire noncollagenous domain (231 amino acids) of the chain encoded for by this gene. Comparison with data reported for human and mouse alpha 1(IV) chains reveals that triple-helix regions are quite different, while NC1 structures are very similar. This suggests different constraints on triple-helix and NC1 domains during evolution. Present data support the assumption that the NC1 structure originated from duplication of an ancestral sequence; the extent of both interspecies and intramolecular homologies suggests the maintenance in vertebrates and invertebrates of an ancestral specific function.  相似文献   

16.
Modification of collagen with a natural cross-linker, procyanidin   总被引:2,自引:0,他引:2  
We have investigated the modification of collagen with a natural plant polyphenol, procyanidin under acidic conditions. Fourier transform infrared spectroscopy (FTIR) and Atomic force microscopy (AFM) studies demonstrate that the hydrogen bond interactions between collagen and procyanidin does not destroy the triple helix conformation of collagen, and the fibril aggregation occurs because of the cross-linking with procyanidin. The water contact angle (WCA) tests indicate that the hydrophobicity of the procyanidin modified collagen films can be improved. Whereas, the water vapor permeability (WVP) of the films decrease with the increasing procyanidin content due to the formation of denser structure. Moreover, differential scanning calorimetry (DSC) and thermogravimetric (TG) measurements reveal that the collagen/procyanidin films have improved thermal stability in comparison with pure collagen. The present study reveals that procyanidin stabilizes collagen as a cross-linker and preserves its triple helical structure.  相似文献   

17.
A detailed three-dimensional model of the collagenous part of C1q was derived by model building and computer-aided energy refinement calculations. The proposed structure is based on the collagen-like (-Gly-Xaa-Yaa-) repeating sequence of 78 to 81 residues in the N-terminal regions of the constituent A, B and C chains, on the mode of disulphide linkage between the 18 chains of C1q, and on its electron microscopically derived gross structure. It is demonstrated that the interruptions of the repeating sequence about half-way along the length of the collagenous regions (Gly36-Ile37-Arg38-Thr39 in the A chain and Ala36-Ile37-Hy138 in the C chain) do not lead to a disruption of the triple helical conformation but rather to a bend of about 60 degrees in an otherwise continuous triple helix. These features are consistent with a flexibility comparable with that of regular triple helices and with the observed low proteolytic susceptibility of the kink region. The azimuthal orientation of the kink is defined approximately by ArgA38 being located in the cap of the knee. Because of this extra residue between two glycine residues, a bad contact that would arise between the methyl group of AlaC36 and the peptide carbonyl of IleA37 in a straight triple helix is relaxed. The model features also a cluster of hydrophobic contacts between large hydrophobic side-chains in the interaction edges between the six collagen triple helices aligned with their about 10 nm long N-terminal regions in the fibril-like endpiece of C1q. The azimuthal orientations of the triple helices were derived by energy calculations of side-chain interactions previously applied to fibre-forming collagens. Independently, the same orientations and interaction edges were derived from the azimuthal orientation of the kink and the electron microscopically observed orientations of the triple helical arms that emerge from the endpiece, and which carry the C-terminal globular binding domains. The structural model has a number of implications for the assembly of the first component of complement from C1q and the zymogen complex C1r2C1s2 and possible mechanisms of its activation.  相似文献   

18.
The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.  相似文献   

19.
Collagens as multidomain proteins   总被引:1,自引:0,他引:1  
M van der Rest  R Garrone 《Biochimie》1990,72(6-7):473-484
The number of proteins known to contain collagen-like triple helical domains is rapidly increasing. The functions of these domains are to provide molecular rods that separate spatially non-triple helical domains with varied properties and structures and to permit lateral interactions between molecules. Two-thirds of the amino acids of the triple helical domains have their side-chains at the surface of the protein. The triple helix is also a structure that is easily predictable from the primary structure. The structure of several recently discovered collagens are discussed in terms of domains and functions. The triple helical domains have sizes varying from 33 to over 1,000 amino acid residues. The longest uninterrupted triple helices are involved in the formation of the classical quarter-staggered fibrils. Other triple helical domains permit varied molecular aggregates. A very broad spectrum of non-triple helical or globular domains are interspersed by triple helices. Only those located at the extremities of the molecules are large in size, sometimes several hundred kDa, while the domains separating 2 triple helices are small (less than 50 amino acids) and provide the molecules with hinges, proteolytic cleavage sites or other specialized functions like a glycosaminoglycan attachment site. If the assembly of the 3 chains required for the triple helix formation can be controlled in vitro, collagen-like molecules offer an as yet unexploited potential for protein engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号