首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione levels were determined in mosquitoes of all ages of the life span. Specific analyses for reduced (GSH) and oxidized (GSSG) glutathione were used and validated to ensure minimal autoxidation of GSH and conversion of these forms. Indeed GSH accounted for greater than 97% of the total glutathione (GSH + GSSG) content in all samples. Marked changes occurred during the life span, and the highest levels of GSH and total glutathione were found during larval growth and metamorphosis (P less than 0.001). Thereafter the levels decreased in the early adult, plateaued in the mature, and decreased 46% in the old and very old mosquito (P less than 0.001). This aging-specific decrease was a general phenomenon, for it occurred in all body regions of both sexes. Starvation up to 3 days did not affect the GSH levels. The importance of these changes in glutathione is its relationship to the reducing and biosynthetic capacities of different life span stages. Of special interest is the senescence decrease which can lead to lower biosynthetic activity and also impaired detoxification capacity.  相似文献   

2.
Double-reciprocal plots of initial-rate data for the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and GSH by human placental GSH S-transferase pi were linear for both substrates. Computer modelling of the initial-rate data using nonlinear least-squares regression analysis favoured a rapid equilibrium random sequential bi-bi mechanism, over a steady-state random sequential mechanism or a steady-state or rapid equilibrium ordered mechanism. KGSH was calculated as 0.125 +/- 0.006 mM, KCDNB was 0.87 +/- 0.07 mM and alpha was 2.1 +/- 0.3 for the rapid equilibrium random model. The product, S-(2,4-dinitrophenyl)glutathione, was a competitive inhibitor with respect to GSH, and a mixed-type inhibitor toward CDNB (KP = 18 +/- 3 microM). The observed pattern of inhibition is consistent with a rapid equilibrium random mechanism, with a dead-end enzyme.CDNB.product complex, but inconsistent with the inhibition patterns of other bireactant mechanisms. Since rat liver GSH S-transferase 3-3 acts via a steady-state random sequential mechanism [1], while human placental GSH S-transferase and perhaps also rat liver GSH S-transferase 1-1 [2] exhibit rapid equilibrium random mechanisms, we conclude that the kinetic mechanism of the GSH S-transferases is isoenzyme-dependent.  相似文献   

3.
In vivo treatment of fasted male rats with 1,2-dibromoethane (DBE) (0.4 mmol/kg) or carbon tetrachloride (CCl4) (4 mmol/kg) was found to rapidly alter the activities of liver cytosolic and microsomal glutathione S-transferases. Microsomal activities towards chloro-2,4-dinitrobenzene (CDNB) were increased 2 h after either treatment. Cytosolic activities towards CDNB and 3,4-dichloronitrobenzene (DCNB), but not 1,2-epoxy-3-(p-nitrophenoxy)-propane (ENPP), were selectively and transiently decreased after either treatment. Time course studies in DBE animals indicated that the decrease in cytosolic activity was not evident until 2 h although liver glutathione (GSH) concentrations were diminished within 15 min. In contrast, in CCl4 animals the decrease in cytosolic activity was evident within 15 min and was not accompanied by diminished GSH concentrations. By 4 h, cytosolic activities had rebounded to control levels in both DBE and CCl4-treated animals. Kinetic studies of the enzyme in liver cytosol from animals 2 h after treatment with DBE or CCl4 indicated that both treatments decreased the apparent Vmax while neither treatment altered the apparent Km. This pattern of change allows exclusion of a simple competitive mechanism of enzyme inhibition, but cannot distinguish between reversible non-competitive inhibition and irreversible inhibition. It is possible that the observed decreases in the activities of the abundant cytosal enzyme are due to 'sacrificial' covalent linkages between the enzyme and reactive metabolites of DBE or CCl4.  相似文献   

4.
The steady-state kinetics of glutathione S-transferase I1 (GST I1) from housefly Musca domestica expressed in Escherichia coli were investigated with glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Concentrations of the varied substrates were from 0.03 to 1 mM for GSH and 0.05 to 1 mM for CDNB. Within this range, Michaelis-Menten behaviour was observed and convergent straight lines in double reciprocal plots excluded a ping-pong kinetic mechanism. Instead, data were consistent either with rapid-equilibrium random or with steady-state ordered sequential mechanisms because of abscissa convergence. Discrimination was achieved by studying the reaction with another electrophilic partner, p-nitrophenyl-acetate (PNPA). Concentrations of PNPA and GSH varied within the ranges 0.5 to 10 mM and 0.03 to 0.6 mM, respectively. The complete set of data supports the proposal of a rapid-equilibrium random-sequential model with strictly independent sites for GSH and CDNB or PNPA. Kinetic parameters are thus true dissociation equilibrium constants with values of 0.15 mM for GSH, 0.15 mM for CDNB, and 7 mM for PNPA. Analysis of the inhibition by the product (S-(2,4-dinitrophenyl)-glutathione, 10 to 100 microM), on the coupling reaction between GSH and CDNB with either GSH (0.05 to 0.5 mM, CDNB 0.2 mM) or CDNB (0.05 to 0.5 mM, GSH 0.2 mM) varied, consistent with the proposed mechanism. Binding of product to the free enzyme excludes GSH (competitive inhibition pattern with Kp = 12 microM) but only slightly hinders binding of CDNB. Binding free energies, together with the inhibition pattern, suggest that the non-peptidic moiety of product interacts with an alternative sub-site within the large open pocket accommodating the various electrophilic substrates. These results lead us to propose a model for intra-pocket shifting of the non-peptidic moiety upon product formation which contributes to the product release.  相似文献   

5.
1-chloro-2,4-dinitrobenzene (CDNB), a potent substrate for glutathione S-transferase, is known to rapidly deplete cellular glutathione (GSH) via conjugate formation. Treatment of quiescent 3T3 cells with 5 uM CDNB results in disassembly of microtubules (MT) within 1 hr as revealed by indirect immunofluorescence microscopy. In addition, CDNB treatment also induces dramatic morphologic alterations similar to those mediated by colchicine. Furthermore, taxol prevents both MT disassembly and morphologic changes normally occurring in CDNB as well as colchicine-treated cells. The mechanism of CDNB-mediated MT disassembly in vivo and its possible relationship to cellular GSH metabolism are under current studies.  相似文献   

6.
A novel, alpha-class glutathione S-transferase (GST) isozyme has been isolated from human liver using glutathione (GSH) affinity chromatography, DEAE-cellulose ion-exchange chromatography, and immunoaffinity chromatography. The isozyme is a dimer of approximately 25,000 Mr with blocked N termini. Structural, kinetic, and immunological properties of this enzyme indicate that it belongs to the alpha class of GSTs. Noticeable differences between the properties of this enzyme and the other alpha-class GSTs of human liver are its anionic nature (pI 5.0), GSH peroxidase activity toward hydrogen peroxide, and relatively higher GSH conjugating activities toward CDNB and epoxide substrates as compared to other alpha-class GSTs. Results of these studies indicate that anionic GST omega characterized previously (Y. C. Awasthi, D. D. Dao, and R. P. Saneto, 1980, Biochem. J. 191, 1-10) from human liver is a mixture of GST pi and a novel alpha-class GST. We have, therefore, reassigned the name GST omega to this new alpha-class anionic GST of human liver.  相似文献   

7.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

8.
The mutagenicity of the commonly used glutathione S-transferase substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) was investigated in the Salmonella mutagenicity assay. CDNB induced a concentration-dependent mutagenic response in Salmonella typhimurium strain TA98. Incorporation of an activation system derived from Aroclor 1254-induced rats did not influence mutagenic response. Under the same conditions DCNB failed to display mutagenic activity. The mutagenic activity of CDNB was attenuated in bacterial strains under-expressing nitroreductase or O-acetylase activity but, in contrast, it was exaggerated in an O-acetylase over-expressing strain. It is inferred that CDNB exhibits a mutagenic response following reduction of the nitro-group to the hydroxylamine, which is further acetylated to form the acetoxy derivative that presumably breaks down spontaneously to generate the nitrenium ion, the likely ultimate mutagen.  相似文献   

9.
Upon treatment with Cd and As cattail (Typha latifolia) showed induced catalase, monodehydroascorbate reductase and ascorbate peroxidase activities in leaves but strong inhibition in rhizomes. Peroxidase activity in leaves of the same plants was inhibited whereas linear increase was detected after Cd treatment in rhizomes.Glutathione S-transferase measurements resulted in identical effects of the trace elements on the substrates CDNB, DCNB, NBC, NBoC, fluorodifen. When GST was assayed with the model substrate DCNB, a different pattern of activity was observed, with strongly increasing activities at increasing HM concentrations. Consequently, to improve the success rates, future phytoremediation plans need to preselect plant species with high antioxidative enzyme activities and an alert GST pattern capable of detoxifying an array of organic xenobiotics.  相似文献   

10.
Previously, we reported the importance of Tyr7 for the catalytic activity of human class Pi glutathione S-transferase [Kong et al. (1992) Biochem. Biophys. Res. Comm., 182, 1122]. As an extension of this study, we investigated the pH dependence of kinetic parameters of the wild-type enzyme and the Y7F mutant. The replacement of Tyr7 with phenylalanine was found to alter the pH dependence of Vmax and Vmax/KmCDNB of the enzyme for conjugation of GSH with 1-chloro-2,4-dinitrobenzene (CDNB). The pKa of the thiol of GSH in the wild-type enzyme-GSH complex was estimated to be about 2.4 pK units lower than that in the Y7F-GSH complex. Tyr7 is thus considered to be important for catalytic activity in lowering the pKa of the thiol of GSH in the enzyme-GSH complex.  相似文献   

11.
Glutathione S-transferases (GSTs) are a family of detoxifying enzymes that catalyze the conjugation of glutathione (GSH) to electrophiles, thereby increasing the solubility of GSH and aiding its excretion from the cell. In this study, a glutatione S-transferase from the gills of the marine shrimp Litopenaeus vannamei was purified by affinity chromatography using a glutathione-agarose affinity column. GST was purified to homogeneity as judged by reducing SDS-PAGE and zymograms. This enzyme is a homodimer composed of approximately 25-kDa subunits and identified as a Mu-class GST based on its activity against 1-chloro-2,4-dinitrobenzene (CDNB) and internal peptide sequence. The specific activity of purified GST was 440.12 micromol/(min mg), and the K(m) values for CDNB and GSH are very similar (390 and 335 microM, respectively). The intersecting pattern of the initial velocities of this enzyme in the Lineweaver-Burke plot is consistent with a sequential steady-state kinetic mechanism. The high specific activity of shrimp GST may be related to a highly effective detoxification mechanism necessary in gills since they are exposed to the external and frequently contaminated environment.  相似文献   

12.
The presence of glutathione (GSH) S-transferase activity, using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate, has been established in the cytosolic fraction of the toxigenic (aflatoxin producing) and nontoxigenic strains of Aspergillus flavus. Significant differences in the GSH S-transferase activity were observed between the toxigenic and non-toxigenic strains. A positive correlation has been demonstrated for the first time between aflatoxin formation and a biochemical parameter, namely GSH S-transferase activity. The evidence in support of A. flavus GSH S-transferase induction by endogenous aflatoxins is as follows: (i) the age-related production of aflatoxin follows the same pattern as the cytosolic GSH S-transferase activity profile; (ii) significantly higher enzyme activity was associated with mycelia of a toxigenic strain grown in medium supporting high aflatoxin production (sucrose-low-salts medium) while the enzyme activity was low in medium producing less aflatoxin (glucose-ammonium nitrate medium). The GSH S-transferase activity of the non-toxigenic strain was hardly affected by a change in the medium as it produces no aflatoxins; and (iii) the toxigenic strain demonstrated significantly higher apparent Vmax. with no change in Km as compared with the non-toxigenic strain. This indicates that the enzyme induction by endogenous aflatoxins is similar to the action of phenobarbitol and other inducing drugs (Kaplowitz et al., 1975).  相似文献   

13.
Recombinant glutathione S-transferase (agGST1-6) from the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) was expressed in Escherichia coli using a pET3a vector system. The expressed enzyme was biochemically active with reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Activity of agGST1-6 with GSH and CDNB was inhibited to different degrees by both alpha-cyano and non-alpha-cyano pyrethroid insecticides. This inhibition was used to develop an assay for quantification of pyrethroids. Standard curves of insecticide concentration against percentage of enzyme inhibition or volume of iodine solution were established by spectrophotometry and iodine volumetric titration, respectively, for permethrin and deltamethrin. These assays allowed estimation of pyrethroid concentrations both spectrophotometrically and visually. For the residue assay of each insecticide, a cut-off point of 50% of the initial pyrethroid impregnation concentration was used, which should differentiate between biologically active and inactive treated bednets. The cross-reactivity of the primary permethrin photodegradants (3-phenoxyalcohol and 3-phenoxybenzoic acid) with the recombinant agGST1-6 was assayed in the same system. No agGST1-6 inhibition by the insecticide metabolites was observed, suggesting that the system is unaffected by primary permethrin metabolites and will accurately measure insecticide parent compound concentrations. The estimated pyrethroid insecticide concentrations, given spectrophotometrically and by iodine titration assay, were comparable to those obtained by direct HPLC quantification of residues extracted from bednets. Hence, it should be relatively easy to adapt this method to produce a test kit for residue quantification in the field.  相似文献   

14.
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a seleno-organic compound, has been reported to mimic glutathione peroxidase (GPX). Since bovine erythrocyte GPX showed dehydroascorbic acid (DHA) reductase and thioltransferase (TTase) activities, ebselen was also examined for DHA reductase and TTase-like activities. Evidence is reported that, in the presence of GSH, ebselen catalyzed the in vitro reduction of DHA to L-ascorbic acid in a dose-dependent manner. Using S-sulfocysteine and GSH as co-substrates, ebselen catalyzed the in vitro formation of glutathione disulfide in a dose-dependent manner, thereby acting as a TTase mimic. 1-Chloro-2,4-dinitrobezene (CDNB), a co-substrate with GSH for glutathione S-transferase, was used to measure rates of adduct formation with ebselen pretreated with GSH and compared with GSH alone. The reaction rate was proportional to ebselen, and ebselen was about 250 times more reactive than GSH on an equimolar basis. The DHA reductase and TTase-like activities, in addition to the powerful nucleophilic reactivity of ebselen selenol, may contribute to ebselen's significant anti-inflammatory and anti-oxidative properties in vivo.  相似文献   

15.
Our previous results indicated that a glutathione (GSH) deficiency is a determinant of the aging process in many tissues and organisms. Correction of this deficiency in the aging mosquito by feeding the cysteine (Cys) precursor magnesium thiazolidine carboxylic acid (MgTc) suggested that the cause could be a lack of Cys. Adult mosquitoes (Aedes aegypti) were fed either a control diet or a diet supplemented with MgTC and then were analyzed for their Cys, cystine, GSH, and glutathione disulfide contents with our HPLC method. The life span profile of Cys levels paralleled that of GSH in the control group with high levels in the young that decreased during maturity and aging. Cystine and glutathione disulfide were undetectable. The causal relationship between the Cys and the GSH deficiencies was shown in the MgTC-supplemented group with an 83% increase in Cys and a 39% increase in GSH relative to control values. Further the conversion steps of MgTC to Cys and then to GSH were verified by use of buthionine sulfoximine. These results demonstrate that a Cys deficiency occurs in the aging mosquito and is the cause of the GSH deficiency.  相似文献   

16.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

17.
Isoenzymes of glutathione S-transferase (GST) in adult Adalia bipunctata, an aphidophagous predator, were studied. Cytosolic GST activity was studied in each beetle developmental stage. The highest activities towards both 1-chloro-2,4-dinitrobenzene (CDNB) and 2,4-dinitro-1-iodobenzene (DNIB) occurred in adults. The enzyme distribution was investigated in adults. While most of the enzymatic activity was found in the abdomen (40-50 and 34-63% respectively) using several concentrations of both CDNB and DNIB, significant differences were observed for the head and the thorax depending on the substrate. Activities were more abundant in the thorax with DNIB (37-47%) compared to the 13-19% obtained with CDNB. Some GST activity was also detected in the elytra. GSTs were purified by epoxy-activated Sepharose 6B affinity chromatography and applied to an HPLC column to determine the native molecular weight (69 kDa). Three isoenzymes were separated by chromatofocusing at pH ranges 7-4. Three bands with molecular mass from 23 to 26 kDa were visualised on SDS-PAGE. Their isoelectric points were 6.66, 6.36, and 6.21. The substrate specificities and the kinetic parameters (Vm and Km) of the isoenzymes showed large differences depending on the isoenzyme. Arch.  相似文献   

18.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

19.
20.
Glutathione S-transferase enzyme (GST) (EC 2.5.1.18) was purified from rainbow trout erythrocytes, and some characteristics of the enzyme and effects of some metal ions on enzyme activity were investigated. For this purpose, erythrocyte glutathione S-transferase enzyme which has 16.54 EU/mg protein specific activities was purified 11,026-fold by glutathione-agarose affinity chromatography with a yield of 59%. Temperature was kept under control (+4°C) during purification. Enzyme purification was checked by performing SDS-PAGE. Optimal pH, stable pH, optimal temperature, and KM and Vmax values for GSH and 1-chloro-2, 4-dinitrobenzene (CDNB) were also determined for the enzyme. In addition, IC50 values, Ki constants and the type of inhibition were determined by means of Line-Weaver-Burk graphs obtained for such inhibitors as Ag+; Cd2+, Cr2+ and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号