首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
真菌G蛋白信号调控蛋白的功能研究进展   总被引:2,自引:0,他引:2  
G蛋白信号途径是真菌细胞信号转导网络的枢纽,在细胞的各种生物学调控过程中具有重要作用。G蛋白信号调控蛋白(Rgulators of G protein signaling,RGS)是一类重要的G蛋白信号调控因子,能通过促进G蛋白α亚基(Gα)偶联的GTP水解,使Gα和Gβγ亚基发生聚合,导致G蛋白失活,从而迅速关闭与G蛋白偶联的信号途径。自从第一个RGS蛋白在酿酒酵母中被鉴定以来,目前已经有30多个RGS蛋白在重要的模式真菌中被报道,包括构巢曲霉、绿僵菌、稻瘟病菌、玉米赤霉菌、轮枝镰孢菌、新型隐球菌和白色念珠菌等。RGS蛋白在真菌的营养菌丝生长、产孢、毒素和色素生产、致病性和有性生殖等过程中发挥着重要作用。本文对真菌中已报道RGS蛋白的功能进行了总结,对真菌RGS蛋白的结构特征和调控机制进行了评述。  相似文献   

2.
RGS与G蛋白信号转导的调节   总被引:3,自引:0,他引:3  
RGSs(regulators of G-protein signaling)是最近发现的G-蛋白信号转导的负调节子,大部分RGSs通过GAPs(GTPase activating proteins)方式发挥作用,RGS的作用具有高度特异性,在体内受到严密的调节。对RGS的深入研究有利于对信号转导调节的了解。  相似文献   

3.
RGS蛋白是近年来不断发现的新的蛋白家族,它们的结构中都包含一个高度保守的RGS结构域。目前从RGS结构域的结构及其同源性出发,对RGS蛋白与Gα亚单位及Gβγ二聚体的相互作用、RGS蛋白的调节活性及其动力学过程、RGS蛋白调节作用的分子机制及其生物学效应等进行了广泛探讨。研究发现,由于高度保守的RGS结构域的存在,几乎所有的RGS有GAP活性,并对G蛋白信号转导发挥负性调节作用。G蛋白信号转导是很多胞外信号引发细胞生理功能改变的共同途径,RGS蛋白的深入研究对于充分阐明该信号转导体系的构成及其调节机制具有深刻意义。  相似文献   

4.
G蛋白信号调节因子(RGS)是G蛋白信号转导通路中的负调控因子。基于结构域序列的同源性,RGS可以分成8个亚家族,R7是其亚家族之一,包括RGS6、GRS7、RGs9和RGS11,其中RGS6是RGS蛋白家族中唯一一个具有G蛋白信号调节和非G蛋白信号调节双重功能的成员,在病理生理过程中广泛存在,也逐渐成为研究热点之一。本文归纳了RGS6的结构、定位及分布,总结了RGS6在心脏作用中的研究进展。  相似文献   

5.
蛋白激酶Ca相互作用蛋白的结构与功能   总被引:1,自引:0,他引:1  
蛋白激酶Cα相互作用蛋白(proteininteractingwithCαkinase,PICK1)是蛋白激酶Cα(proteinkinaseCα,PKCα)的靶蛋白之一,也是在PKCα和突触后膜受体蛋白间起重要作用的衔接蛋白。PICK1分别由PDZ结构域、BAR结构域以及卷曲螺旋区和酸性氨基酸区组成。PICK1中的PDZ结构域和受体蛋白、转运蛋白、衔接蛋白的相互作用报道较多,BAR结构域则与支架蛋白、质膜等相互作用。PICK1在突触可塑性、神经递质传递、外周神经感觉、细胞生长和黏连等方面发挥重要作用。本文对PICK1的结构和功能进行综述。  相似文献   

6.
PHIP是一种与胰腺β细胞中胰岛素受体底物(IRS)的PH结构域相互作用的蛋白。根据小鼠PHIP(mPHIP)mRNA翻译的不同起始位点,除全长的PHIP1外,mPHIP基因还编码其他3种不同变异体。在胰岛素诱导的信号途径中,主要分布于细胞核的PHIP1和IRS-1的PH结构域相互作用,介导IRS蛋白酪氨酸的磷酸化。IRS-2和PHIP1的共表达能诱导IRS在细胞膜上的定位,促进葡萄糖转运蛋白4(GLUT4)向细胞质膜的转移。PHIP1的表达能提高β-细胞内细胞周期蛋白D2的表达,促进β细胞的生长。PHIP1的表达活化蛋白激酶B(PKB),活化的PKB能明显抑制β细胞的凋亡。PHIP与胰岛素信号传导途径中其他信号分子的相互作用机制尚不明确。  相似文献   

7.
G蛋白的结构生物学   总被引:1,自引:0,他引:1  
G蛋白的结构生物学鲁朋,杜国光(北京职工医学院,北京100036)(北京医科大学,北京100083)关键词G蛋白G蛋白是数十种信息分子传入细胞内的转换器。这些信息分子包括光(视觉)、味觉、嗅觉、乙酰胆碱、谷氨酸、γ-氨基丁酸、肾上腺素、多巴胺、组胺及...  相似文献   

8.
蛋白激酶Cα相互作用蛋白的结构与功能   总被引:1,自引:0,他引:1  
蛋白激酶Cα相互作用蛋白(protein interacting with Cα kinase,PICK1)是蛋白激酶Cox(protein kinase Cα,PKCα)的靶蛋白之一,也是在PKCα和突触后膜受体蛋白间起重要作用的衔接蛋白。PICK1分别由PDZ结构域、BAR结构域以及卷曲螺旋区和酸性氨基酸区组成。PICK1中的PDZ结构域和受体蛋白、转运蛋白、衔接蛋白的相互作用报道较多,BAR结构域则与支架蛋白、质膜等相互作用。PICK1在突触可塑性、神经递质传递、外周神经感觉、细胞生长和黏连等方面发挥重要作用。本文对PICK1的结构和功能进行综述。  相似文献   

9.
G蛋白偶联受体的结构与功能   总被引:7,自引:0,他引:7  
G蛋白偶联受体(Gprotein-coupled receptor,GPCR)是具有7个跨膜螺旋的蛋白质受体,根据其序列的相似性以及与配基的结合情况,共分为5个亚家族,是人体内最大的蛋白质家族,也是重要的药物靶标。二聚体或寡聚体的形成,以及G蛋白偶联受体多元素参与的信号网络传递模式的研究,打破了传统的配基→G蛋白偶联受体→G蛋白→效应器的这种单一的线性信号传递模式,它的结构与功能的研究对于新药的开发、研制以及推动医药领域的发展起着举足轻重的作用。  相似文献   

10.
植物激素作用中的G蛋白调节   总被引:1,自引:0,他引:1  
包方  杨贞标 《植物学通报》2003,20(4):395-406
Guanine nucleotide-binding proteins known as G proteins or GTPases are universal molecular switches that play a pivotal role in signal transduction. Signal transducing GTPases include heterotrimeric G proteins composed of Gα, Gβ and Gγ and monomeric small GTPases. Small GTPases are related to the α subunit of heterotrimeric G proteins but differ from heterotrimeric G proteins in the mechanisms by which they are regulated by upstream factors as well as those by which they activate downstream targets (Yang,2002).  相似文献   

11.
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3β and 14-3-3ε, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3ε competes with Go for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3ε sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by G protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with G, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.  相似文献   

12.
RGS2 (regulator of G protein signaling 2) is known to limit signals mediated via Gq- and Gs-coupled GPCRs (G protein coupled receptors), and it has been implicated in the differentiation of several cells types. The physiology of RGS2 knockout mice (rgs2−/−) has been studied in some detail, however, a metabolic phenotype has not previously been reported. We observed that old (21-24 month) rgs2−/− mice weigh much less than wild-type C57BL/6 controls, and exhibit greatly reduced fat deposits, decreased serum lipids, and low leptin levels. Lower weight was evident as early as four weeks and continued throughout life. Younger adult male rgs2−/− mice (4-8 months) were found to show similar strain-related differences as the aged animals, as well improved glucose clearance and insulin sensitivity, and enhanced beta-adrenergic and glucagon signaling in isolated hepatocytes. In addition, rgs2−/− pre-adipocytes had reduced levels of differentiation markers (Peroxisome proliferator-activated receptor γ (PPARγ); lipoprotein lipase (Lpl); CCAAT/enhancer binding protein α (CEBPα)) and also rgs2−/− white adipocytes were small relative to controls, suggesting altered adipogenesis. In wild-type animals, RGS2 mRNA was decreased in brown adipose tissue after cold exposure (7 h at 4 °C) but increased in white adipose tissue in response to a high fat diet, also suggesting a role in lipid storage. No differences between strains were detected with respect to food intake, energy expenditure, GPCR-stimulated lipolysis, or adaptive thermogenesis. In conclusion this study points to RGS2 as being an important regulatory factor in controlling body weight and adipose function.  相似文献   

13.
R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in regulation of many GPCR-mediated responses. Multiple RGS proteins are usually expressed in a cell, and it is difficult to point out which RGS protein species are functionally important in the cell. To evaluate intrinsic potency of these RGS proteins, we compared inhibitory effects of RGS1, RGS2, RGS3, RGS4, RGS5, RGS8 and RGS16 on AT1 receptor signaling. Intracellular Ca2+ responses to angiotensin II were markedly attenuated by transiently expressed RGS2, RGS3 and RGS8, compared to weak inhibition by RGS1, RGS4, RGS5 and RGS16. N-terminally deleted RGS2 (RGS2 domain) lost this potent inhibitory effect, whereas RGS domains of RGS3 and RGS8 showed strong inhibition similar to those of the full-length proteins. To investigate key determinants that specify the differences in potency, we constructed chimeric domains by replacing one or two of three exon parts of RGS8 domain with the corresponding part of RGS5. The chimeric RGS8 domains containing the first or the second exon part of RGS5 showed strong inhibitory effects similar to that of wild type RGS8, but the chimeric domain with the third exon part of RGS5 lost its activity. On the contrary, replacement of the third exon part of RGS5 with the corresponding residues of RGS8 increased the inhibitory effect. The role of the third exon part of RGS8 domain was further confirmed with the chimeric RGS8/RGS4 domains. These results indicate the potent inhibitory activity of RGS8 among R4/B subfamily proteins and importance of the third exon.  相似文献   

14.
Functional asymmetry of G‐protein‐coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT1 receptor, which directly and constitutively couples to Gi proteins and the regulator of G‐protein signalling (RGS) 20. The molecular organization of the ternary MT1/Gi/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of Gi and the RGS domain, we propose a model wherein one Gi and one RGS20 protein bind to separate protomers of MT1 dimers in a pre‐associated complex that rearranges upon agonist activation. This model was further validated with MT1/MT2 heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR‐interacting proteins.  相似文献   

15.
Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models.  相似文献   

16.
Emerging evidence indicates that R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in functional regulation in the cardiovascular system. In this study, we compared effects of three R4/B subfamily proteins, RGS2, RGS4 and RGS5 on angiotensin AT1 receptor signaling, and investigated roles of the N-terminus of RGS2. In HEK293T cells expressing AT1 receptor stably, intracellular Ca2+ responses induced by angiotensin II were much more strongly attenuated by RGS2 than by RGS4 and RGS5. N-terminally deleted RGS2 proteins lost this potent inhibitory effect. Replacement of the N-terminal residues 1-71 of RGS2 with the corresponding residues (1-51) of RGS5 decreased significantly the inhibitory effect. On the other hand, replacement of the residues 1-51 of RGS5 with the residues 1-71 of RGS2 increased the inhibitory effect dramatically. Furthermore, we investigated functional contribution of N-terminal subdomains of RGS2, namely, an N-terminal region (residues 16-55) with an amphipathic α helix domain (the subdomain N1), a probable non-specific membrane-targeting subdomain, and another region (residues 56-71) between the α helix and the RGS box (the subdomain N2), a probable GPCR-recognizing subdomain. RGS2 chimera proteins with the residues 1-33 or 34-52 of RGS5 showed weak inhibitory activity, and either of RGS5 chimera proteins with residues 1-55 or 56-71 of RGS2 showed strong inhibitory effects on AT1 receptor signaling. The present study indicates the essential roles of both N-terminal subdomains for the potent inhibitory activity of RGS2 on AT1 receptor signaling.  相似文献   

17.
RGS5 is a member of regulators of G protein signaling (RGS) proteins that attenuate heterotrimeric G protein signaling by functioning as GTPase-activating proteins (GAPs). We investigated phosphorylation of RGS5 and the resulting change of its function. In 293T cells, transiently expressed RGS5 was phosphorylated by endogenous protein kinases in the basal state. The phosphorylation was enhanced by phorbol 12-myristate 13-acetate (PMA) and endothelin-1 (ET-1), and suppressed by protein kinase C (PKC) inhibitors, H7, calphostin C and staurosporine. These results suggest involvement of PKC in phosphorylation of RGS5. In in vitro experiments, PKC phosphorylated recombinant RGS5 protein at serine residues. RGS5 protein phosphorylated by PKC showed much lower binding capacity for and GAP activity toward Galpha subunits than did the unphosphorylated RGS5. In cells expressing RGS5, the inhibitory effect of RGS5 on ET-1-induced Ca(2+) responses was enhanced by staurosporine. Mass spectrometric analysis of the phosphorylated RGS5 revealed that Ser166 was one of the predominant phosphorylation sites. Substitution of Ser166 by aspartic acid abolished the binding capacity to Galpha subunits and the GAP activity, and markedly reduced the inhibitory effect on ET-1-induced Ca(2+) responses. These results indicate that phosphorylation at Ser166 of RGS5 by PKC causes loss of the function of RGS5 in G protein signaling. Since this serine residue is conserved in RGS domains of many RGS proteins, the phosphorylation at Ser166 by PKC might act as a molecular switch and have functional significance.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号