共查询到20条相似文献,搜索用时 0 毫秒
1.
Lopes Pinto F Erasmie S Blikstad C Lindblad P Oliveira P 《Journal of plant physiology》2011,168(16):1934-1942
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120. 相似文献
2.
3.
A computational search was carried out to identify additional binding sites for the manganese response regulator, ManR, in the genome of Anabaena sp. PCC 7120. This approach predicted ManR binding sites: the promoter regions of the genes of all3575-alr3576 and the gene of alr5134 from Anabaena sp. PCC 7120. Electrophoretic mobility shift assays confirmed that the ManR of Anabaena sp. PCC 7120 specifically bound to the promoter regions of all3575-alr3576 and alr5134. 相似文献
4.
5.
6.
The Anabaena sp. PCC 7120 ManR and a homologous protein of MntH were identified by BLAST search. Recombinant ManR protein was overexpressed in Escherichia coli and purified by an immobilized metal (Ni) affinity chromatography. Electrophoretic mobility shift assays revealed that ManR specifically bound to the promoter region of the mntH gene. Site-directed mutagenesis experiments demonstrated that the specific recognition site for ManR is TATGAAAAGAATATGAGAA, which is composed of two direct repeats of the consensus sequence (T/A)ATGA(G/A)A(A/G). This is a novel regulatory DNA motif in cyanobacteria, indicating that the expression of mntH was regulated by a two-component Mn(2+)-Sensing System containing ManR in Anabaena sp. PCC 7120. To date, this specific pathway of regulating mntH expression has only been found in cyanobacteria. 相似文献
7.
Chaurasia N Mishra Y Rai LC 《Biochemical and biophysical research communications》2008,376(1):225-230
Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 °C), NaCl (6% w/v), carbofuron (0.025 mg ml−1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses. 相似文献
8.
As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N(2). 相似文献
9.
The cellular and subcellular localization of FtsZ, a bacterial cell division protein, were investigated in vegetative cells of the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. We show by using immunogold-transmission electron microscopy that FtsZ forms a ring structure in a filamentous cyanobacterium, similar to observations in unicellular bacteria and chloroplasts. This finding, that the FtsZ in a filamentous cyanobacterium accumulates at the growing edge of the division septa leading to the formation of the typical prokaryotic Z-ring arrangement, is novel. Moreover, an apparent cytoplasmic distribution of FtsZ occurred in vegetative cells. During the transition of vegetative cells into terminally differentiated heterocysts the cytoplasmic FtsZ levels decreased substantially. These findings suggest a conserved function of FtsZ among prokaryotes, including filamentous cyanobacteria with cell differentiation capacity, and possibly a role of FtsZ as a cytoskeletal component in the cytoplasm. 相似文献
10.
The occurrence and distribution of a multifunctional chaperonin-60 (cpn60), the GroEL protein, was demonstrated in the cyanobacterium Anabaena PCC 7120 by using a rabbit anti-GroEL (Escherichia coli) antibody. Western-blot analysis showed a distinct cross-reaction with a protein of approx. 65 kilodaltons, analogous to the Mr of the E. coli homologue. Immunocyto-chemical studies of vegetative cells showed that a chaperonin was localized in both vegetative cells and heterocysts. In vegetative cells cpn60 was primarily detected both in the carboxysomes, and in the cytoplasm, though mainly in the thylakoid region of the latter. In heterocysts, specialized cells for nitrogen fixation, the cpn60 label was prominent and was evenly distributed throughout the cell. These results support recent findings that chaperonins are multifunctional proteins, and extend those findings by demonstrating the occurrence of cpn60 in a prokaryotic cyanobacterium and by raising the possibility of the involvement of this chaperonin in the assembly of heterocystous proteins.Abbreviations cpn60 chaperonin-60 - Mr relative molecular mass - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase 相似文献
11.
Protein tyrosine phosphorylation in the cyanobacterium Anabaena sp. strain PCC 7120. 总被引:1,自引:1,他引:1
下载免费PDF全文

Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density. 相似文献
12.
Growth of prokaryotes at reduced temperature results in the formation of a cold-adapted ribosome through association with de novo synthesized polypeptides. In vitro and in vivo phosphorylation studies combined with affinity purification and mass spectrometry identified that the phosphorylation status of translation elongation factor EF-Tu was altered in response to cold stress in the photosynthetic, Gram-negative cyanobacterium Anabaena sp. strain PCC 7120. In response to a temperature downshift from 30 to 20 degrees C, EF-Tu was rapidly and transiently hyperphosphorylated during the acclimation phase followed by a reduction in phosphorylation below background levels in response to prolonged exposure. EF-Tu was identified as a phosphothreonine protein. Unexpectedly, ribosomal protein S2 was also observed to be a phosphoprotein continuously phosphorylated during cold stress. The phosphorylation status of EF-Tu has previously been associated with translational regulation in other systems, with a reduction in translation elongation occurring in response to phosphorylation. These results provide evidence for a novel mechanism by which translation is initially downregulated in response to cold stress in Anabaena. 相似文献
13.
Butachlor, a commonly used herbicide adversely affects the nitrogen fixing capability of Anabaena, an acclaimed nitrogen fixer in
the Indian paddy fields. The nitrogen fixation in Anabaena is triggered by the excision of nifD element by xisA gene leading to
rearrangement of nifD forming nifHDK operon in the heterocyst of Anabaena sp. PCC7120. Functional elucidation adjudged
through in-silico analysis revealed that xisA belongs to integrase family of tyrosine recombinase. The predicted functional partners
with XisA protein that have shown cooccurence with this protein in a network are mainly hypothetical proteins with unknown
functions except psaK1 whose exact function in photosystem I is not yet known. The focus of this study was to find out the relation
between XisA and butachlor using in-silico approaches. The XisA protein was modeled and its active sites were identified. Docking
studies revealed that butachlor binds at the active site of XisA protein hampering its excision ability vis-à-vis nif genes in Anabaena
sp. PCC7120. This study reveals that butachlor is not directly involved in hampering the nitrogen fixing ability of Anabaena sp.
PCC7120 but by arresting the excision ability of XisA protein necessary for the functioning of nif gene and nitrogen fixation. 相似文献
14.
Flavodoxin has been isolated and purified from cultures of the cyanobacterium Anabaena cultivated in a low-iron medium. This flavoprotein has a molecular weight of 20,000 and contains 1 molecule of flavin mononucleotide per mol of protein. Various biochemical characteristics are reported including amino-acid composition, isoelectric point and the fluorescence properties of the apoprotein. The extinction coefficients and isosbestic points were determined for the oxidized and semiquinone forms of flavodoxin. The electron paramagnetic resonance spectrum of the semiquinone exhibited a spectral linewidth of 23 G, which is typical for a neutral flavoprotein semiquinone. Kinetic measurements give a rate constant of 9.6×107 (M-1 min-1) for the reduction of flavodoxin in the photosynthetic electron-transport chain by the photosystem I and 6.6×106 for the reaction in which flavodoxin is reduced by ferredoxin-NADP+ oxidoreductase. The Michaelis constant for electron donation to nitrogenase by reduced flavodoxin is 8.5 M.Abbreviations FMN
flavin mononucleotide
- FNR
ferredoxin-NADP+ oxidoreductase
- PSI
photosystem I 相似文献
15.
16.
Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. PCC 7120 总被引:4,自引:0,他引:4
A nuclease that could be recovered from the supernatant of cultures, as well as from cell-free extracts, of the cyanobacterium Anabaena sp. PCC 7120 was identified as a 29 kDa polypeptide by its ability to degrade DNA after electrophoresis in DNA-containing SDS-polyacrylamide gels. Some clones of a gene library of strain PCC 7120 established in Escherichia coli were found to produce the 29 kDa nuclease. The nucA gene encoding this nuclease was subcloned and sequenced. The deduced polypeptide, NucA, had a molecular weight of 29,650, presented a presumptive signal peptide in its N-terminal region and showed homology to the products of the nuc gene from Serratia marcescens and the NUC1 gene from Saccharomyces cerevisiae. The NucA protein from Anabaena itself, or from the cloned nucA gene expressed in E. coli, catalysed the degradation of both RNA and DNA, had the potential to act as an endonuclease, and functioned best in the presence of Mn2+ or Mg2+. An Anabaena nucA insertional mutant was generated which failed to produce the 29 kDa nuclease. 相似文献
17.
分别从培养4d,24d和KCl诱导的材料分离液泡,对这3种液泡进行了蛋白质、还原糖和藻青蛋白测定,结果表明,3种物质含量呈现规律性变化。培养4d的材料液泡中各物质含量低,培养24d的材料液泡中物质含量升高,KCl诱导的液泡中含量下降,液泡中各种物质的相对含量在3种液泡中依次升高。这一结果说明,培养4d,液泡处于初期阶段,培养24d,液泡处于充分发育阶段,KCl诱导液泡为衰老阶段。随着细胞发育,液泡的生理作用提高。 相似文献
18.
19.
Summary A triparental conjugation technique (using pRL10630 plasmid) was used in creation and characterization of three transposon-induced mutants of Anabaena PCC7120 which are capable of extracellular ammonia liberation in the absence and /or presence of a glutamate analogue (MSX). Results suggest that such mutants can potentially serve as suitable biofertilizer to support crops without addition of the glutamate analogue. 相似文献
20.
Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. 总被引:11,自引:0,他引:11
T Kaneko Y Nakamura C P Wolk T Kuritz S Sasamoto A Watanabe M Iriguchi A Ishikawa K Kawashima T Kimura Y Kishida M Kohara M Matsumoto A Matsuno A Muraki N Nakazaki S Shimpo M Sugimoto M Takazawa M Yamada M Yasuda S Tabata 《DNA research》2001,8(5):205-13; 227-53
The nucleotide sequence of the entire genome of a filamentous cyanobacterium, Anabaena sp. strain PCC 7120, was determined. The genome of Anabaena consisted of a single chromosome (6,413,771 bp) and six plasmids, designated pCC7120alpha (408,101 bp), pCC7120beta (186,614 bp), pCC7120gamma (101,965 bp), pCC7120delta (55,414 bp), pCC7120epsilon (40,340 bp), and pCC7120zeta (5,584 bp). The chromosome bears 5368 potential protein-encoding genes, four sets of rRNA genes, 48 tRNA genes representing 42 tRNA species, and 4 genes for small structural RNAs. The predicted products of 45% of the potential protein-encoding genes showed sequence similarity to known and predicted proteins of known function, and 27% to translated products of hypothetical genes. The remaining 28% lacked significant similarity to genes for known and predicted proteins in the public DNA databases. More than 60 genes involved in various processes of heterocyst formation and nitrogen fixation were assigned to the chromosome based on their similarity to the reported genes. One hundred and ninety-five genes coding for components of two-component signal transduction systems, nearly 2.5 times as many as those in Synechocystis sp. PCC 6803, were identified on the chromosome. Only 37% of the Anabaena genes showed significant sequence similarity to those of Synechocystis, indicating a high degree of divergence of the gene information between the two cyanobacterial strains. 相似文献