首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes a capillary GC-MS method for the simultaneous determination of endogenous 6beta-hydroxycortisol (6beta-OHF) and its stable isotope-labelled analogue, 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6beta-OHF-2H(5)), in human urine. 6beta-Hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (cortisol-13C(4),(2)H(5)) was used as an analytical internal standard. The methoxime trimethylsilyl ether (MO-TMS) derivatization was employed for the GC-MS analysis of 6beta-OHF. Quantitation was carried out by selected-ion monitoring (SIM) of the characteristic fragment ion ([M-31](+.)) of the MO-TMS derivative of 6beta-OHF. The sensitivity limit of the present GC-MS-SIM method was found to be 25 pg per injection for 6beta-OHF (S/N ratio=5.6). The within-day reproducibility in the amounts of unlabelled and labelled 6beta-OHFs determined were in good agreement with the actual amounts added, the relative errors being less than 5.30%. The inter-assay RSDs were less than 4.95% for unlabelled and labelled 6beta-OHFs.  相似文献   

2.
A reversed-phase high-performance liquid chromatography (HPLC) method for the simultaneous determination of cortisol and cortisone in human urine samples using methylprednisolone as the internal standard is decribed. The method involves the systematic use of isocratic mobile phases of water and methanol, acetonitrile or tetrahydrofuran and a reversed-phase Hypersil C18 column. A water-acetonitrile mixture used as the mobile phase proved to be the most adequate one for analyzing urine samples purified by solvent extraction. The proposed method is sensitive, reproducible and selective. It was applied to the determination of cortisol and cortisone in several human urine samples: healthy subjects, sportsmen before and/or after stress for doping control purposes, and patients with Cushing's syndrome.  相似文献   

3.
A new method for simultaneous determination of glucocorticoids (GCs) in plasma or urine by high-performance liquid chromatography (HPLC) with fluorimetric detection has been developed. Following extraction with ethyl acetate using a reversed-phase disposable cartridge, the six GCs [cortisol (F), cortisone (E), prednisolone (PL), prednisone (PN), 6β-hydroxycortisol (6β-OHF) and 6β-hydroxyprednisolone (6β-OHP)] and an internal standard (6β-hydroxycotortisone) were derivatized by treatment with 9-anthroyl nitrile (9-AN) in a mixture of basic catalysts (triethylamine and quinuclidine) to give the fluorescent esters through the 21-hydroxyl group. The GC derivatives so obtained were then cleaned by a straight-phase disposable cartridge and chromatographed on a straight-phase column with an isocratic HPLC technique. The fluorescence derivatives of the GCs, including the internal standard, were separated as clear single peaks and no interfering peaks were observed on the chromatograms. The lower limits of detection for F, E, PL and PN in plasma or urine were 0.1 ng/ml and those for 6β-OHF and 6β-OHP in plasma or urine were 0.5 ng/ml, at a signal-to-noise ratio of 3. The analytical recovery of known amounts of the GCs added to plasma or urine were almost 100%. This method can be applied to the determination of plasma or urinary F in renal transplant patients who received PL and can be applied for other metabolic investigations in relation to the change in blood pressure via 11β-hydroxysteroid dehydrogenase or in hepatic metabolizing via CYP3A4.  相似文献   

4.
A specific, rapid and sensitive method for urinary free cortisol and cortisone utilizing sequential thin layer (TLC) and high-performance liquid chromatography (HPLC) was developed. After addition of prednisone as the internal standard to 1 ml of urine, extraction of the steroids was accomplished by automated sorption on and desorption from a styrenedivinylbenzene copolymeric resin cartridge. Further purification was carried out by TLC. Quantitation of the recovered steroids at 254 nm was achieved during HPLC in a reverse phase system with 21-deoxycortisone as the external standard. When the values of urinary free cortisol both from normal subjects and patients were compared with those obtained by a current RIA procedure, the greater specificity of the new method was clearly demonstrated. Simultaneous measurement of both urinary free cortisol and cortisone in various clinical states appears to offer a more complete index of adrenocortical function than urinary free cortisol alone.  相似文献   

5.
Drug–drug and food–drug interactions are often due to an inhibition or induction of drug-metabolizing cytochrome P450 (CYP) enzymes and may result in non-response or adverse reactions. Hence, phenotypic biomarkers of CYP activity appear as useful tools for individualized pharmacotherapy. The metabolic ratio (MR) of the concentration of 6β-hydroxycortisol (6β-OHC) to cortisol (MR 6β-OHC/cortisol) in human urine had been proposed as an endogenous marker for CYP3A activity. Here, we report on the improvement of published LC-MS/MS methods for the simultaneous quantification of cortisol and 6β-OHC, using on-line sample cleanup by column switching and isotope-labeled analogues as internal standards. [2H2]6β-OHC was prepared by incubation of human recombinant CYP3A4 with commercially available [2H2]cortisol. Analytical sensitivity could be increased about 10-fold. The first morning urine of 69 female and 27 male healthy volunteers was analyzed for cortisol and 6β-OHC. Concentrations ranged from 1.0 to 142 and 24 to 670 ng/mL, respectively. Individual MR 6β-OHC/cortisol varied more than 20-fold and we were able to show for the first time for a Caucasian population significantly higher MR values in females as compared to males. This non-invasive biomarker for CYP3A activity lends itself for the study of genetic differences as well as enzyme induction or inhibition in the clinical setting without the need of using a probe drug.  相似文献   

6.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

7.
An HPLC assay for the determination of risedronate in human urine was developed and validated. Risedronate and the internal standard were isolated from 5-ml urine samples in a two-part procedure. First, the analytes were precipitated from urine along with endogenous phosphates as calcium salts by the addition of CaCl(2) at alkaline pH. The precipitate was then dissolved in 0.05 M ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and subjected to ion-pair solid-phase extraction using a Waters HLB cartridge (1 ml, 30 mg) with 1-octyltriethylammonium phosphate as the ion-pair reagent. Following extraction, the analytes were initially separated from the majority of co-extracted endogenous components on a Waters X-Terra RP18 (4.6 x 50 mm, 3.5 microm) column. The effluent from the X-Terra was "heart-cut" onto a Phenomenex Synergi Polar RP (4.6 x 150 mm, 4 microm) column for final separation. UV detection (lambda=262 nm) was used to quantitate risedronate in the concentration range of 7.5-250 ng/ml. Mean recovery was 83.3% for risedronate and 86.5% for the internal standard. The intra-day precision of the assay, as assessed by replicate (n=5) standard curves, was better than 6% RSD for all points on the standard curve. Within-day accuracy for the standards ranged from 96.3 to 106.1% of nominal. Inter-day precision for quality controls assayed over a 3-week period was better than 5%, while inter-day accuracy was within 90% of nominal. The assay was employed to analyze samples collected during a clinical pharmacokinetics study.  相似文献   

8.
[1,2,3,4-13C]cortisol was i.v. administered to two sisters aged 11 yr (patient I) and 3 yr (patient II) who suffer from 17 alpha-hydroxylase deficiency. This is the first time that the cortisol production rate (CPR) in patients with 17 alpha-hydroxylase deficiency has been measured with a stable labelled tracer using the urinary method. The urine was collected for 3 days. High-performance liquid chromatography (HPLC) of approximately 100 ml urine extracts was carried out to isolate the small amount of cortisol metabolites excreted. The cortisol metabolites were oxidized to 11-oxo-aetiocholanolone. The isotope dilution in the methyl oxime tert-butyldimethylsilyl ether derivatives was measured by selected ion monitoring gas chromatography/mass spectrometry (GC/MS). The CPR calculated from tetrahydrocortisone (THE) and the cortolones was 765 and 536 nmol/day, respectively in patient I. The CPR in patient II was only calculated from THE and was 62 nmol/day. If radioactive labelled cortisol had been used, much larger quantities of urine would have been needed for isolation of sufficient mass of metabolites, even then purification may have been difficult. Steroid profiling of 1 ml urine samples by GC and identification by GC/MS revealed high concentrations of pregnenolone, progesterone, 11 beta-hydroxy progesterone and corticosterone metabolites. Tetrahydrocorticosterone and 5 alpha-tetrahydrocorticosterone were found in urine at elevated excretions of 2.5 and 5.7, 0.9 and 2.0 mumols/24 h, in patients I and II respectively. No cortisol metabolites were detected by routine GC or GC/MS as the low amounts excreted co-eluted with the relatively abundant corticosterone metabolites.  相似文献   

9.
A method to calculate unbound cortisol from total cortisol (measured by competitive protein binding) and CBG (measured by radial immunodiffusion) based on the binding equilibrium has been evaluated. The calculated results (y) correlate well with those (x) obtained by centrifugal ultrafiltration at 37 degrees C (y = 1.04 x - 2.11 ng/ml; r = 0.975; n = 150). The concentration of CBG is similar in normal men (37.7 +/- 3.5 (SD) micrograms/ml; n = 12) and women (39.5 +/- 3.7 (SD) micrograms/ml; n = 7) and shows no diurnal variation, but marked diurnal variation is observed for total cortisol (193.7 +/- 35.0 (SD) ng/ml at 08.00 h vs 43.2 +/- 23.3 (SD) ng/ml at 22.00 h; n = 19) and particularly for unbound cortisol (16.5 +/- 5.6 (SD) ng/ml at 08.00 h vs 2.3 +/- 1.8 (SD) ng/ml at 22.00 h; n = 19). The concentration of CBG (89.1 +/- 11.2 (SD) micrograms/ml) and of total cortisol (395.6 +/- 103.3 (SD) ng/ml at 08.00 h; 110.3 +/- 16.6 (SD) ng/ml at 22.00 h) are clearly elevated in estrogen treated women (n = 11) but unbound cortisol levels (17.2 +/- 7.7 (SD) ng/ml at 08.00 h; 2.5 +/- 0.5 (SD) ng/ml at 22.00 h) are similar to the control group. The concentration of CBG is significantly decreased in patients with Cushing's syndrome (33.2 +/- 5.6 micrograms/ml; n = 17) and unbound cortisol is relatively more elevated than total cortisol in these patients. In adrenal insufficiently CBG is normal, but total and unbound cortisol are markedly decreased. There is a significant decrease of CBG in hyperthyroidism (35.7 +/- 5.5 micrograms/ml; n = 22), in cirrhosis (32.0 +/- 8.0 micrograms/ml; n = 14) and in renal disease and a significant increase in patients treated with antiepileptic drugs (47.5 +/- 6.3 micrograms/ml; n = 14), but total and unbound cortisol are normal in all these conditions. We conclude that unbound cortisol can be calculated in a simple and reliable way from total cortisol and CBG and permits a better evaluation of adrenal function, particularly in patients with altered CBG concentrations.  相似文献   

10.
Shi L  Wudy SA  Maser-Gluth C  Hartmann MF  Remer T 《Steroids》2011,76(1-2):140-144
Urine volume should be considered as a confounder when using urinary free cortisol (UFF) and cortisone (UFE) to assess glucocorticoid (GC) status. We aimed to examine whether adrenal androgen (AA) metabolites may be also affected by urine volume in healthy children. To compare the flow dependence of GC and AA metabolites, specific GC metabolites were examined. In 24-h urine samples of 120 (60 boys) healthy children (4-10 yr), steroid profiles were determined by GC-MS analysis, UFF and UFE by radioimmunoassay. To assess daily AA and GC secretion rates, 7 quantitatively most important AA (∑C19) and GC (∑C21) metabolites were summed. Sum of DHEA and its 16α-hydroxylated metabolites were denoted as DHEA&M. Association of urine volume with AA (∑C19, DHEA&M, DHEA, 16α-hydroxy-DHEA, 3β,16α,17β-androstenetriol) and GC (∑C21, UFF, UFE, 6β-hydroxycortisol, 20α-dihydrocortisol) were examined in linear regression models. Among the examined AA metabolites, 16α-hydroxy-DHEA (β=0.56, p<0.0001) and DHEA (β=0.43, p=0.05) showed relatively strong association with urine volume. A trend was seen for ∑C19 (β=0.23, p=0.08), but not for DHEA&M (p>0.1). Regarding GC metabolites, urine volume showed a stronger association with cortisol's direct metabolites, i.e., cortisone, 6β-hydroxycortisol and 20α-dihydrocortisol (β=0.4-0.6, p<0.01) than with cortisol itself (β=0.28, p<0.05). ∑C21 was not associated with urine volume. In conclusion, like UFF and UFE, renal excretion of DHEA, 16α-hydroxy-DHEA, 6β-hydroxycortisol, and 20α-dihydrocortisol may also depend on urine volume. The intrarenal production of the latter three and cortisone might explain their relative strong water-flow-dependency. Total AA or GC secretion marker appears not to be relevantly confounded by urine volume.  相似文献   

11.
Fenske M 《Steroids》2006,71(11-12):1014-1018
The influence of water loading on urinary excretion of free cortisol and cortisone was investigated in healthy men. The results were as follows: water loading tests (intake of 0.25-1.5 L) in a single individual showed that a water load of 1.5 L reliably increased the excretion of urine, free cortisol and cortisone (p < 0.01). Regression analyses gave significant correlations of urine volume with free cortisol and free cortisone, and of free cortisol and free cortisone. Corresponding results were obtained when water loading tests were performed in males who ingested 1.5 L of water (n = 8): the excretion of urine, free cortisol and free cortisone were significantly augmented; correlated was urine volume with free cortisol and free cortisone, and free cortisol with free cortisone. In a third set of tests, volunteers collected one 5 h urine (10:00-15:00 h) after the intake of 3 x 0.1 or 0.5 L at 11:00, 12:00 and 14:00 h. Excretion of urine, free cortisol and free cortisone in males of the low water loading group (3 x 0.1 L) was 0.59 mL/min, and 8.2 or 15.0 microg/5 h; corresponding values in individuals ingesting 3 x 0.5 L of water were 1.5 mL/min (p < 0.01), 12.3 microg/5 h (p > 0.05) and 26.3 microg/5 h (p < 0.02). In summary, urinary free cortisol and cortisone excretion in healthy men depends on urine volume, especially during water diuresis. Thus, interpretation of free cortisol and especially of free cortisone excretion is only possible if subjects strictly control their fluid intake and if urine volume is considered an important pre-analytical parameter-otherwise, interpretation of urinary free cortisol results is difficult and of urinary free cortisone data remains tenuous at best.  相似文献   

12.
A sensitive and specific high-performance liquid chromatographic (HPLC) method for the determination of cortisol in only 200 microliters of serum is described. Cortisol and two internal standards, 19-nortestosterone (IS1) and 6 alpha-methylprednisolone (IS2) are extracted with dichloromethane and analyzed on a C18 reversed-phase column eluted with a mobile phase of methanol:water at a flow rate of 0.75 ml/min. Ultraviolet absorption at 254 nm is used for detection and quantitation is performed by peak height ratio measurement. Using 200 microliters of serum, the lower limit of detection for cortisol is 10 ng/ml, the analytical recovery is 104 +/- 3.6% (n = 8), and the day-to-day precision was 1.69% at a level of 90 ng/ml (n = 16). Cortisol values obtained by this method were generally lower than those obtained by radioimmunoassay or by fluorometry. A serum pool was analyzed both by HPLC and by isotope dilution/mass spectrometry (ID/MS). A mean value of 90.1 ng/ml was obtained by HPLC (n = 16, CV = 1.7%), whereas ID/MS yielded a mean of 90.8 ng/ml (n = 28, CV = 0.4%). These results clearly demonstrate the high specificity and the accuracy of the HPLC procedure. The use of two internal standards not only compensates for losses during the sample manipulation but also prevents erroneous results in case of medication by either of these two products.  相似文献   

13.
R B Silverman  B J Invergo 《Biochemistry》1986,25(22):6817-6820
The mechanism of inactivation of pig brain gamma-aminobutyric acid aminotransferase (GABA-T) by (S)-4-amino-5-fluoropentanoic acid (1, R = CH2CH2COOH, X = F) previously proposed [Silverman, R. B., & Levy, M. A. (1981) Biochemistry 20, 1197-1203] is revised. apo-GABA-T is reconstituted with [4-3H]pyridoxal 5'-phosphate and inactivated with 1 (R = CH2CH2COOH, X = F). Treatment of inactivated enzyme with base followed by acid denaturation leads to the complete release of radioactivity as 6-[2-hydroxy-3-methyl-6-(phosphonoxymethyl)-4-pyridinyl]-4-oxo-5-+ ++hexenoic acid (4, R = CH2CH2COOH). Alkaline phosphatase treatment of this compound produces dephosphorylated 4 (R = CH2CH2COOH). These results support a mechanism that was suggested by Metzler and co-workers [Likos, J. J., Ueno, H., Feldhaus, R. W., & Metzler, D. E. (1982) Biochemistry 21, 4377-4386] for the inactivation of glutamate decarboxylase by serine O-sulfate (Scheme I, pathway b, R = COOH, X = OSO3-).  相似文献   

14.
Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in cells by HPLC is an analytical challenge since the concentration of dNTP present in mammalian cells is several orders of magnitude lower than the corresponding NTP. Hence, the quantitation of dNTP in cells is generally performed after selective oxidation or removal of the major NTP. The procedures reported so far are lengthy and cumbersome and do not enable the simultaneous determination of NTP. We report the development of a simple, direct HPLC method for the simultaneous determination of dNTP and NTP in colon carcinoma WiDr cell extracts using a stepwise gradient elution ion-pairing HPLC with uv detection at 260 nm and with a minimal chemical manipulation of cells. Exponentially growing WiDr cells were harvested by centrifugation, rinsed with phosphate-buffered saline, and carefully counted. The pellets were suspended in a known volume of ice-cold water and deproteinized with an equal volume of 6% trichloroacetic acid. The acid cell extracts (corresponding to 2. 5 x 10(6) cells/100 microl) were centrifuged at 13,000g for 10 min at 4 degrees C. The resulting supernatants were stored at -80 degrees C prior to analysis. Aliquots (100 microl) were neutralized with 4.3 microl saturated Na2CO3 solution prior the injection of 40 microl onto the HPLC column (injection speed 250 microl/min). Chromatographic separations were performed using two Symmetry C18 3. 5-microm (2 x 3.9 x 150 mm) columns (Waters), connected in series equipped with a Sentry guard column (3.9 x 20 mm i.d.) filled with the same packing material. The HPLC columns were kept at 30 degrees C. The mobile phase was delivered at a flow rate of 0.5 ml/min, with the following stepwise gradient elution program: % solvent A/solvent B, 100/0 at 0 min --> 100/0 at 1 min --> 36/64 at 5 min --> 31/69 at 90 min --> 31/69 at 105 min --> 0/100 at 106 min --> 0/100 at 120 min; 50/50 MeOH/solvent B from 121 to 130 min; 100% solvent A from 131 to 160 min. Solvent A contained 0.01 M KH2PO4, 0.01 M tetrabutylammonium chloride, and 0.25% MeOH and was adjusted to pH 7. 0 (550 microl 10 N NaOH for 1 liter solvent A). Solvent B consisted of 0.1 M KH2PO4, 0.028 M tetrabutylammonium chloride, and 30% MeOH and was neutralized to pH 7.0 (1.4 ml 10 N NaOH for 1 liter solvent B). Even though dNTPs are minor components of cell extracts, satisfactory regression coefficients were obtained for their calibration curves (r2 > 0.99) established with the addition-calibration methods up to 120 pmol/40-microl injection. The applicability of the method was demonstrated by in vitro studies of the modulation of NTP and dNTP pools in WiDr colon carcinoma cell lines exposed to various pharmacological concentrations of cytostatic drugs (i.e., FMdC, IUdR, gemcitabine). In conclusion, this optimized, simplified, analytical method enables the simultaneous quantitation of NTP and dNTP and may represent a valuable tool for the detection of minute alterations of cellular dNTP/NTP pools induced by anticancer/antiviral drugs and diseases.  相似文献   

15.
An HPLC method was developed for the determination of a new oxazolidinone, DA-7867 (I), in human plasma and urine and in rat tissue homogenates. To 100 microl of biological sample, 300 microl acetonitrile and 50 microl methanol containing 10 microg/ml DA-7858 (the internal standard) were added. After vortex-mixing and centrifugation, the supernatant was evaporated under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of the mobile phase and a 50-microl aliquot was injected directly onto the reversed-phase (C(18)) column. The mobile phase, 20 mM KH2PO4:acetonitrile (75:25, v/v) was run at a flow rate of 1.5 ml/min and the column effluent was monitored by a UV detector set at 300 nm. The retention times of I and DA-7858 were approximately 6.5 and 8.7 min, respectively. The detection limits of I in human plasma and urine and in rat tissue homogenates were 20, 20, and 50 ng/ml, respectively.  相似文献   

16.
BACKGROUND AND METHODS: Quantitative enzyme-immunoassays of urinary and fecal immunoglobulin A (IgA), cortisol and 11-17-dioxoandrostanes (11,17-DOA), and serum cortisol in eight metabolic-cage-housed female cynomolgus monkeys were performed. The monkeys were divided into two groups, B and NB. Group B animals were blood sampled every 6 hours, whereas Group NB animals were not handled/blood sampled. RESULTS: No differences were recorded between the amounts of feces and urine excreted by the two groups. Group B animals excreted more urinary cortisol than did Group NB animals indicating that restraint-blood sampling resulted in a stress response. Excreted amounts of IgA and 11,17-DOA (urine and feces) did not differ between the groups. CONCLUSIONS: Urinary cortisol was a reliable marker of the stress associated with repeated blood sampling. Declining amounts of excreted urinary cortisol indicated that cynomolgus monkeys acclimated quickly to repeated blood sampling in metabolism cages. Within and between animal variation in amounts of feces voided demonstrated the importance of expressing fecal markers as 'amounts excreted per time unit per kg body weight' rather than just measuring the concentrations in fecal samples.  相似文献   

17.
The inhibition of neutral phosphatase isolated from the bacteria of the Pseudomonadaceae family by various fragments of the enzyme-hydrolyzed R-O-PO3H2 substrates, inorganic orthophosphate (KH2PO4) and its analogs as well as by adenine, adenosine, alcohols, sugars and amino acids, was studied. It was demonstrated that among other compounds tested only the orthophosphoric acid anions (H2PO4-) exhibit the properties of strong associative inhibitors (K1Vi = 4.35.10(-6)M of the enzyme. The pH dependence of the Michaelis constant [pKm0 = f(pH)] and the inhibition constant for phosphatase by potassium orthophosphate [pK1Vi(KH2PO4) = f(pH)] was studied. The presence in the enzyme active center of a carboxylic (pK = 4.3 +/- 0.1) (presumably, glutamine) and an imidazole (pK = 7.15 +/- 0.1) amino acid residues was postulated. The data obtained were compared to those for neutral, alkaline and acid phosphatases.  相似文献   

18.
A rapid high-performance liquid chromatographic (HPLC) method for the simultaneous determination of cortisol and cortisone in a single extract of 1 ml of serum is described. The method employs meprednisone as the internal standard. The steroids were analysed isocratically by reversed-phase HPLC with an octadecylsilane-bonded (ODS) column using ultraviolet detection. The matrix effect was reduced by lowering the sample pH by adding glacial acetic acid to the sera. The samples were then filtered through regenerated cellulose membranes at 4°C and extracted with diethyl ether. The dried eluates were redissolved in the mobile phase and injected into the column. The detection limit of the assay for both steroids was 500 ng/l. Cortisol was determined in twenty serum samples by both HPLC and radioimmunoassay (RIA). The results were similar. Interference by other steroids and certain steroid analogue drugs was also studied. The HPLC method yielded no cross-reactivity between the different steroids as may occur with the RIA technique. The HPLC method was technically easy to perform and it allowed us to quantify both cortisol and cortisone in a single serum extract with high specificity.  相似文献   

19.
2,4-二硝基氟苯衍生法测定游离氨基酸方法的优化   总被引:17,自引:3,他引:14  
以美国HPLC 110 0系列为基本实验设备 ,在流速为 1 0ml/min ,紫外检测器波长为 36 0nm ,运行时间 2 5min ,进样量为 10ul情况下 ,筛选了流动相梯度、2 ,4_二硝基氟苯用量、柱温 ,测定了回收率。结果表明 :FDBN衍生法分析游离氨基酸 ,流动相Ⅰ为 0 0 4NKH2 PO4 ( pH =7 2± 0 0 5 ,40 %KOH调整 )缓冲液 ;流动相Ⅱ为乙腈的水溶液 ,其浓度为 5 5 % ,流动相Ⅰ的百分比梯度为 86 / 0min— 88/ 2min— 86 / 4min— 70 / 10min— 30 / 2 0min— 10 / 2 1min— 0 / 2 4.0min ,1%FDBN用量为 5— 2 0ul,柱温 40℃ ,样品AA浓度大于 0 5nmol/ul,17种AA分离效果最佳。此方法AA回收率在10 0 %~ 10 4%之间。  相似文献   

20.
Distribution and fetomaternal transfer of 6 beta-hydroxycortisol (6 beta-OHF) was studied using serial sampling following injection of tritium labelled 6 beta-OHF into various fluid compartments in the chronically cannulated unaesthesized pregnant ewe. There was a rapid transfer of 6 beta-OHF from the fetal circulation into amniotic fluid and maternal blood. In contrast, the maternal----fetal transfer of this steroid metabolite was considerably less. The sequence of appearance of 6 beta-OHF in fetal blood and amniotic fluid following injection into maternal blood suggests that this steroid is first transferred across the placenta to fetal blood before gaining entry into the amniotic fluid space. The half-lives of 6 beta-OHF after initial equilibration in maternal plasma, fetal plasma and amniotic fluid were 2.0 h, 5.1 h and 8.9 h respectively. The amniotic sac appears to contain a relatively static pool of 6 beta-OHF and may act as a "trap" for 6 beta-OHF in the ovine conceptus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号