首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current?voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.  相似文献   

2.
Results are presented from experimental investigations of the dynamics of optical emission from a nanosecond diffuse discharge in a rod-plane electrode system. A study was made of discharges in a 10-cm-long interelectrode gap in atmospheric-pressure air (the cathode being a 1-cm-diameter rod with a bullet-shaped end). The voltage across the discharge gap was 220 kV and the voltage pulse duration was 180 ns, the voltage rise time being 10 ns. In experiments, the discharges were observed to evolve through two stages: the bridging stage and the conduction stage. The bridging stage begins with intense optical emission from the cathode region, the onset of the emission being delayed with respect to the beginning of the voltage pulse. Simultaneously with the onset of optical emission, a displacement current corresponding to the motion of charged particles begins to be generated in the cathode region. The duration of this current corresponds to the time the emission front takes to bridge the gap. As the emission front reaches the anode region, the current increases abruptly, indicating the beginning of the conduction stage. It was found that the time delay of optical emission relative to the beginning of the voltage pulse largely governs the discharge parameters: as the time delay becomes longer, the emission front velocity in the bridging stage increases from 0.6 to 1.5 cm/ns, the probability of realizing a multichannel structure of the discharge becomes higher, and the discharge current and the intensity of X-ray emission from the discharge grow.  相似文献   

3.
The dynamics and emission characteristics of pulsed breakdown over a ferrite surface at a current amplitude of 270 kA and current rise time of 80 ns were studied experimentally. It is shown that the characteristic transverse size of the discharge region in visible radiation is ~3 mm, while that in vacuum UV (VUV) radiation is ~200 μm. The duration of the VUV pulse with an average power of ≈0.275 GW is about 80 ns.  相似文献   

4.
Results are presented from experimental studies of the current-voltage characteristics and spatial and temporal parameters of the plasma in a high-current pulsed magnetron sputtering system with a 10-cm-diameter plane disk cathode. It is shown that the plasma density in such a system is three orders of magnitude higher than that in conventional dc magnetron discharges and reaches 1013 cm−3 at a distance of 250 mm from the cathode at a peak discharge current of 500 A. The plasma propagates from the cathode region at a velocity of 1 cm/μs in the axial direction and 0.25 cm/μs in the radial direction. Optical emission spectroscopy shows that the degree of plasma ionization increases severalfold with increasing discharge current, mainly at the expense of the sputtered material.  相似文献   

5.
Ion emission from the plasma of a micropinch discharge is studied by analyzing the plasma flow from the discharge region with the help of time-of-flight technique and probe diagnostics. Concurrently, soft Xray emission from the micropinch is recorded. The experimental data are interpreted using the radiative contraction model.  相似文献   

6.
The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.5–4 torr and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the gas temperature is at most 700 K and the degree of dissociation does not exceed several percent. Direct electron impact is shown to be the main factor governing all the processes in the electrode region of the discharge, including the excitation of the recorded emission. In particular, the Balmer-series Hα line emission is related to the dissociative electron-impact excitation of hydrogen molecules in the ground state.  相似文献   

7.
The interaction of a plasma in the accelerating gap of an open discharge with a strong external electric field and with the cathode surface has been investigated theoretically and experimentally. In a pulsed nanosecond discharge, the ion inertia and plasma screening of the electric field cause a fast growth of the electric field E in the cathode region and a decrease in the length of the latter. Along with a reduction of the electron multiplication factor at high electric fields, this leads to a substantial decrease in the ion flux toward the cathode, which allows one to develop highly efficient open-discharge light sources with a long lifetime and low cathode sputtering. In this respect, continuous and quasi-continuous discharges are less advantageous because of the smaller increase in the electric field in the cathode region. The Townsend coefficients of charge multiplication and electron emission at high electric fields typical of open discharges have been measured for the first time. Fast ions and atoms extracted from the plasma of the accelerating gap significantly affect the cathode emission properties. In particular, photoemission is enhanced by more than one order of magnitude and becomes the main mechanism for electron generation. This also increases the efficiency and lifetime of open-discharge light sources.  相似文献   

8.
The formation of a neck in the cathode plasma jet in the initial stage of a low-voltage vacuum spark is investigated experimentally and theoretically. X-ray bursts corresponding to an electron temperature of 150–300 eV are detected. With the use of a pinhole camera, it is found that an emitting region less than 1 mm in size is located near the cathode. The free expansion of a current-carrying cathode plasma jet with a current growing in accordance with the experimentally observed time dependence is simulated using a hydrodynamic model. It is shown that the neck forms at the front of the plasma jet due to the plasma compression by the magnetic self-field. In the constriction region, the plasma is rapidly heated and multiply charged ions are generated. The calculated spatial and temporal variations in the electron temperature and average ion charge are close to the measured dependences over a wide range of the discharge parameters.  相似文献   

9.
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.  相似文献   

10.
The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method allows one to determine the electron density and electric field in plasma by measuring the relative intensities of the Hα, Hβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homogeneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the frequency 2.45 GHz (ncr~7×1010 cm?3). Inside the spherical region, the electric field varies slightly over the radius and the electron density increases as the discharge boundary is approached. The observed discharge structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sustained discharge zone (spherical region); and a decaying plasma region, which is separated from the active discharge zone by an electric double layer.  相似文献   

11.
A model that combines the Monte Carlo method for calculating electron and ion trajectories in three-dimensional geometry and an analytic approach developed for calculating an electric field in two-dimensional geometry is used to simulate the charging of the surface of periodic submicron SiO2 structures by electron and ion fluxes in the plasma of a one- and a two-frequency capacitive RF discharge. The energy distribution function of the electrons and ions that come to the bottom of a submicron structure in an argon and an argon-containing plasma is calculated for structures with a width of 11–45 nm and an aspect ratio of d/w = 1–10 (where d and w are the depth and width of the structure). It is shown that secondary electronelectron emission plays an important role in the redistribution of the electric charge and, accordingly, of the electric potential in a submicron structure. It is demonstrated that, when the secondary electron-electron emission mechanism is taken into account, the ion energy spectrum at the bottom of a submicron structure is shifted toward lower energies and becomes broader in comparison with the spectrum of an ion flux from an RF discharge plasma. Moreover, the shift and broadening depend only on the secondary electron-electron emission coefficient, the energy of the charged particles, and the aspect ratio.  相似文献   

12.
The results of measurements of the energy distribution function of ions escaping from a beam-plasma discharge are compared with the data from probe measurements in the discharge region. It is shown that, on the discharge axis, there is a region with a higher degree of ionization, whose position depends on the external parameters, in particular, on the gas pressure. The mean energy of the ions that leave the plasma from the outside of this region is determined by the potential of the plasma column. Inside the region with a higher degree of ionization, there is an additional mechanism for ion acceleration; as a result, the energy of the ions that leave the plasma from this region is higher than the energy of the electrostatically accelerated ions by a factor of 1.5 to 5. The results obtained show promise for creating a plasma-processing reactor with controlled ion parameters for the purposes of treating materials for microelectronics.  相似文献   

13.
Evolution of the extreme ultraviolet (XUV) and soft X-ray (SXR) emission in the 50-to 2000-eV photon energy range from a plasma corona formed by loading a relatively thick Cu wire (with an initial diameter of 120 µm) was observed in a Z-pinch discharge with a maximum current of 2 MA and current rise time of 100 ns. A diagnostic complex consisting of a five-channel SXR polychromator, a four-frame X-ray pinhole camera, and a mica crystal spectrograph shows that double-humped emission pulses in the XUV and SXR spectral ranges are generated 70–130 ns after the onset of the discharge current. The total energy of the pulses is 5 kJ, and the maximum power is 60 GW. A part of the observed kiloelectronvolt X-ray emission from three to five spots with diameters of 1–2 mm consists of the Cu K-and L-shell lines.  相似文献   

14.
Results are presented from time-integrated measurements of soft X-ray emission from Z-pinches during the implosion of simple and nested wire arrays. The blackening density distribution obtained with the help of a pinhole camera is recalculated into the time-integrated Z-pinch radiance. It is found that, in the case of a simple wire array, up to 70% of the total SXR energy emitted during a discharge is radiated from the axial region, the rest of energy being radiated from plasma jets, whereas in the case of a nested wire array, more than 90% of the SXR energy is radiated from the axial region.  相似文献   

15.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   

16.
Images of ion sources in the plasma of a micropinch discharge were recorded. The most intense ion source was found to be a ⩾1-mm-diameter 3-mm-long anode region. The main contribution to the images is made by single-charged ions of the plasma-forming element with energies of 10–50 keV.  相似文献   

17.
The emission from the plasma of a steady-state electric discharge in a He/H2O mixture in the wavelength range 130–670 nm is investigated. It is shown that, at a water vapor partial pressure of P=2.0–2.5 kPa, the discharge mainly emits within the range 306–315 nm. The emission consists of an OH (A-X; 0-0) 307.4-nm narrow peak and a broad band with a maximum at λmax=309.1 nm. As the partial pressure of water vapor decreases to 50–150 Pa, VUV emission at wavelengths of λ=186, 180, and 157 nm becomes dominant. In the visible region, Hα 656.3-nm and Hβ 486.1-nm spectral lines and HeI lines in the range 447.1–667.8 nm, which are of interest for diagnosing the plasma, prevail. The intensities of the main bands and spectral lines are determined as functions of the helium partial pressure and discharge current.  相似文献   

18.
In order to prove that thermal ionization is the main mechanism for sustaining a high-current low-pressure diffuse discharge in crossed E × H fields, the ion temperature was estimated by analyzing the Doppler broadening of a spectral line. The emission spectrum from discharge plasma was recorded using a specially designed echelle spectrograph with compensated astigmatism and with a resolution of 0.02 nm.  相似文献   

19.
Results are presented from time-resolved measurements of the soft X-ray emission in the 10-to 40-eV spectral range from the plasma of a pulsed capillary discharge in argon at current pulse amplitudes of up to 26 kA and a current rise time of ~1012 A/s. The experiments were carried out with 0.3-cm-diameter 15.7-cm-long ceramic capillaries filled with argon at a pressure of 0.25–0.5 Torr in the SIGNAL electrophysical facility. The experimental data are interpreted via computer simulations of the magnetohydrodynamics and level-by-level ion kinetics of an argon plasma. The results obtained indicate that soft X-ray laser pulses with a photon energy of 26.4 eV and duration of 1–2 ns are generated ≈33 ns after the beginning of the discharge current pulse.  相似文献   

20.
Results of two-dimensional hydrodynamic simulations of a surface glow discharge operating at pressures of 0.2–0.5 Torr in a nitrogen flow propagating with a velocity of 1000 m/s in the presence of external ionization are presented. The effect of the external ionization rate on discharge operation is analyzed. The current-voltage characteristics of the discharge are calculated for different intensities of external ionization in both the presence and absence of secondary electron emission from the cathode. The discharge structure and plasma parameters in the vicinity of the loaded electrode are considered. It is shown that, when the discharge operates at the expense of secondary emission from the cathode, the discharge current and cathode sheath configuration are insensitive to external ionization. It is also demonstrated that, even at a high rate of external ionization, the discharge operates due to secondary emission from the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号