首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Revisiting horizontal transfer of transposable elements in Drosophila   总被引:1,自引:0,他引:1  
Loreto EL  Carareto CM  Capy P 《Heredity》2008,100(6):545-554
Horizontal transfer (HT), defined as the transfer of genetic material between species, is considered to be an essential step in the 'life cycle' of transposable elements. We present a broad overview of suspected cases of HT of transposable elements in Drosophila. Hundred-one putative events of HT have been proposed in Drosophila for 21 different elements (5.0% refer to non-long terminal repeat (LTR) retrotransposons, 42.6% to LTR retrotransposons and 52.4% to DNA transposons). We discuss the methods used to infer HT, their limits and the putative vectors of transposable elements. We outline all the alternative hypotheses and ask how we can be almost certain that phylogenetic inconsistencies are due to HT.  相似文献   

2.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   

3.

Background  

Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs).  相似文献   

4.
Previous theories have suggested that some introns with the ability to self-splice are derived from transposable elements. However, an interpretation is given here that suggests retrotransposons and retroviruses (transposable elements which move via RNA intermediates) have evolved from self-splicing introns. This is based on the involvement of RNA intermediates, the ancestral nature of the self-splicing reaction, and the assumed presence of introns in an RNA world. Conserved sequences within the introns, essential for splicing, and their wide phylogenetic distribution also make it unlikely that they are descended from transposable elements. Mitochondrial plasmids of Neurospora species containing features of both introns and retrotransposons have a central role in the resolution of the problem and are considered here to support the view that introns are, or have been, sources of mobile elements. The possibility of other transposable elements arising from introns is also considered.  相似文献   

5.
6.
7.
Horizontal gene transfer, defined as the transmission of genetic material between reproductively isolated species, has been considered for a long time to be a rare phenomenon. Most well-documented cases of horizontal gene transfer have been described in prokaryotes or in animals and they often involve transposable elements. The most abundant class of transposable elements in plant genomes are the long terminal repeat (LTR) retrotransposons. Because of their propensity to increase their copy number while active, LTR retrotransposons can have a significant impact on genomics changes during evolution. In a previous study, we showed that in the wild rice species Oryza australiensis , 60% of the genome is composed of only three families of LTR retrotransposons named RIRE1 , Wallabi and Kangourou . In the present study, using both in silico and experimental approaches, we show that one of these three families, RIRE1 , has been transferred horizontally between O. australiensis and seven other reproductively isolated Oryza species. This constitutes a new case of horizontal transfer in plants.  相似文献   

8.
D. F. Voytas 《Genetica》1992,86(1-3):13-20
Transposable elements have likely played an important role in species evolution. Questions of transposable element evolution, therefore, are best addressed within the context of their hosts' evolutionary history. This approach requires efficient means to identify and characterize transposable elements among related species. For the copia-like retrotransposons, this has recently become possible due to the development of a polymerase chain reaction assay to identify these sequences among plants. In this paper, the evolution of copia-like retrotransposons is evaluated within the context of the evolutionary history of two plant models, Arabidopsis thaliana and cotton (Gossypium).  相似文献   

9.
10.
原生动物基因组转座元件的研究进展   总被引:2,自引:1,他引:1  
许金山  周泽扬 《遗传》2008,30(8):967-976
转座元件是一类广泛分布于真核生物的可移动的遗传因子, 可以引起基因重组和变异, 在物种进化及遗传改良中起着重要作用。针对近年来原生动物全基因组序列中大量发现的转座元件, 文章着重比较了转座元件在锥虫、利什曼虫、微孢子虫、变形虫和滴虫基因组序列中的存在种类、分布特征及其功能意义。原生动物转座元件以LINE 和SINE为主, 其次是DNA转座元件和LTR反转座元件, 部分转座元件在高A+T含量区富集, 预示着转座元件与基因组序列A+T含量有着紧密联系。根据不同种微孢子虫基因组之间转座元件的差异, 推测在微孢子虫基因组进化过程中, 至少经历了一次转座元件的丢失事件。最后对转座元件在原生动物寄生虫的进一步研究和应用作了展望。  相似文献   

11.
How transposable elements evolve is a key facet in understanding of spontaneous mutation and genomic rearrangements in various organisms. One of the best ways to approach this question is to study a newly evolved transposable element whose presence is restricted to a specific population or strain. The retrotransposons ninja and aurora may provide insights into the process of their evolution, because of their contrasting characteristics, even though they show high sequence identity. The ninja retrotransposon was found in a Drosophila simulans strain in high copy number and is potent in transposition. On the other hand, aurora elements are distributed widely among the species belonging to the Drosophila melanogaster species complex, but are immobile at least in D. melanogaster. In order to distinguish the two closely resembled retrotransposons by molecular means, we determined and compared DNA sequence of the elements, and identified characteristic internal deletions and nucleotide substitutions in 5'-long terminal repeats (LTR). Analyses of the structure of ninja homologs and LTR sequences amplified from both genomic and cloned DNA revealed that the actively transposable ninja elements were present only in D. simulans strains, but inactive aurora elements exist in both D. melanogaster and D. simulans.  相似文献   

12.
13.
Molecular Biology Reports - A significant proportion of plant genomes is consists of transposable elements (TEs), especially LTR retrotransposons (LTR-RTs) which are known to drive genome...  相似文献   

14.
Duret L  Marais G  Biémont C 《Genetics》2000,156(4):1661-1669
We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-based elements). Gene (coding region) density is higher in regions of low recombination rate. However, the lower TE density in these regions is not due to the counterselection of TE insertions within exons since the same positive correlation between TE density and recombination rate was found in noncoding regions (both in introns and intergenic DNA). These data are not compatible with a global model of selection acting against TE insertions, for which an accumulation of elements in regions of reduced recombination is expected. We also found no evidence for a stronger selection against TE insertions on the X chromosome compared to the autosomes. The difference in distribution of the DNA and RNA-based elements along the chromosomes in relation to recombination rate can be explained by differences in the transposition processes.  相似文献   

15.
APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G) is an innate intracellular antiretroviral factor that can inhibit viral retroelements such as retroviruses and hepadnaviruses. However, it is unknown whether it can act on non-viral substrates. Retrotransposons are transposable elements that cumulatively account for about one third of the human genome. They are commonly classified in long terminal repeat (LTR) retrotransposons, which are strongly homologous to retroviruses, and non-LTR retrotransposons also known as L1 elements or LINE-1 (long interspersed nucleotide element-1) elements. Most of the L1 elements are defective and only a small number are very active in vivo, but they are responsible for nearby all of the retrotransposition in the human population. The cloning of active human L1 elements has allowed the development of tissue culture-based assays for measuring their retrotransposition potential. We used such an assay to demonstrate that APOBEC3G, which impairs the replication of exogenous retroelements, does not affect the replication of endogenous L1 retrotransposons.  相似文献   

16.
Horizontal (interspecific) transfer is regarded as a possible strategy for the propagation of transposable elements through evolutionary time. To date, however, conclusive evidence that transposable elements are capable of horizontal transfer from one species to another has been limited to class II or DNA-type elements. We tested the possibility of such transfer for several Drosophila melanogaster LTR retrotransposons of the gypsy group in an experiment in which D. melanogaster and D. virilis somatic cell lines were used as donor and recipient cells, respectively. This approach was chosen in light of the high levels of LTR retrotransposon amplification and expression observed in cultured D. melanogaster cells. In the course of the experiment, parallel analysis for mdg1, mdg3, 17.6, 297, 412 and B104/roo retrotransposons was performed to detect their presence in the genome of recipient cells. Only the mdg3 retrotransposon, which lacks an env gene, was found to be transmitted into recipient cells. This model, based on the use of cultured cells, is a promising system for further investigating the mechanisms of LTR retrotransposon transfer.  相似文献   

17.
Genome projects allow us to sample copies of a retrotransposon sequence family residing in a host genome. The variation in DNA sequence between these individual copies will reflect the evolutionary process that has spread the sequences through the genome. Here I review quantitatively the expected diversity of elements belonging to a transposable genetic element family. I use a simple neutral model for replicative mobile DNAs such as retrotransposons to predict the extent of sequence variability between members of a single family of transposable elements, both within and between species. The effects of horizontal transfer are also explored. I also consider the impact on these distributions of an increase in transposition rate arising from a mutational change in copy of the sequence. In addition, I consider the question of the interaction between retrotransposons and their hosts, and the causes of the abundance of transposable elements in the genomes that they occupy.  相似文献   

18.
The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in the WGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.  相似文献   

19.
20.
Long terminal retrotransposons are major components of eukaryotic transposable elements. We have surveyed the long terminal repeats (LTR) retrotransposons of domesticated silkworm (Bombyx mori) by mining the data produced by Bombyx mori Genome Sequencing Project. At least 29 separate families of LTR retrotransposons are identified in this survey, comprising of 11.8% of the complete sequence. Families of domesticated silkworm LTR retrotransposons can be mainly classified into three groups: gypsy-like, copia-like, Pao-Bel. Fourteen families identified consist of gypsy-like elements, four families consist of copia-like elements and seven families consist of Pao-Bel elements. In addition to the three groups of LTR retrotransposons, two families of unusual non-coding elements are identified in the genome of this species. Further phylogenetic analysis of RT domain indicates that the elements of B.mori show high diversity and can form different clades in each group. An analysis of sequence variation from different families reveals distinct patterns of variation for the elements belonging to three groups. The analysis of the domesticated silkworm LTR retrotransposons should assist in our understanding of the roles of retroelement in lepidopteron insect genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号