首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The few orientation studies that have been carried out with day-migrating birds show that they are able to use solar and magnetic orientation cues for orientation. Previous orientation experiments in Emlen funnels have been carried out either with hand-raised birds or with birds caught during resting periods at stop-over sites. The aim of our study was to test whether birds caught during active flight show a higher concentration of migratory activity in the seasonally appropriate migratory direction in the funnels than birds that had not experienced migration just before the funnel experiments. The topography at the alpine pass Col de Bretolet at the border of Switzerland and France allowed us to capture birds during active migratory flight. These birds were in full migration disposition. Orientation experiments with chaffinches suggested an influence of the sun because chaffinches did not orient in the seasonally expected direction, but probably showed positive phototaxis towards the light of the sun at the opposite side of the funnel. Chaffinches tested under overcast conditions oriented to the north-west which probably was a 'nonsense' orientation and not a reverse migration or compensatory behaviour. We conclude that freshly caught birds are too stressed to show appropriate orientation when tested immediately after catching.  相似文献   

2.
《Animal behaviour》1988,36(3):865-876
The orientation of robins captured during autumn and spring migration at two different sites, Falsterbo and Ottenby, in southern Sweden was investigated by cage experiments during the twilight period after sunset. The robins were tested under clear skies with skylight from sunset visible, and under simulated total overcast. The robins from the two sites differed in orientation, especially during autumn migration. While robins from Ottenby generally oriented in their expected migratory direction, the birds from Falsterbo under clear skies oriented towards the sunset direction with a narrow scatter in individual mean headings. Under simulated total overcast the robins from Falsterbo perferred northerly directions in autumn. Short-distance recoveries, one or only a few days after ringing, show that robins in autumn regularly fly 20–80 km from Falsterbo on northerly courses, indicating that they have temporarily reoriented from their normal migratory direction when confronted with the Baltic Sea. In contrast, most robins arrive at Ottenby by extensive flights across the Baltic Sea, and rapidly continue their sea crossing in the normal migratory directions. Mean fat deposits in autumn robins were significantly larger at Ottenby than at Falsterbo. These results indicate that migrating birds may show markedly different orientational dispositions depending on body condition and on their situation with respect to preceding and impending migration over land and sea, respectively.  相似文献   

3.
The avian hippocampal formation is known to participate in naturally occurring spatial behavior such as homing in pigeons and cache recovery in food storing passerines, but its participation in the often spectacular migrations of birds remains uncertain. As a first investigation into the possible role of hippocampal formation in migration, the effect of hippocampal formation lesions on the geomagnetic migratory orientation of Savannah sparrows was examined. When tested indoors, hippocampal formation-lesioned sparrows were able to orient in an appropriate migratory direction indicating no necessary role for hippocampal formation in geomagnetic migratory orientation. However, hippocampal formation-lesioned birds displayed significantly less migratory (nocturnal) activity, a result that inspires further study. Accepted: 25 August 1999  相似文献   

4.
《Animal behaviour》1988,36(3):877-887
The migratory orientation of the robin was tested in shifted magnetic fields during the twilight period after sunset, under clear skies and under simulated total overcast. The horizontal direction of the geomagnetic field was shifted 90° to the right or left in relation to the local magnetic field, without changing either the intensity of the field or its angle of inclination. Experiments were conducted during both spring and autumn, with robins captured as passage migrants at the Falsterbo and Ottenby bird observatories in southern Sweden as test subjects. Generally, the orientation of robins was affected by magnetic shifts compared to controls tested in the natural geomagnetic field. Autumn birds from the two capture sites differed in their responses, probably because of different migratory dispositions and body conditions. The robins most often changed their orientation to maintain their typical axis of migration relative to the shifted magnetic fields. However, preferred directions in relation to the shifted magnetic fields were frequently reverse from normal, or axial rather than unimodal. These results disagree with suggested mechanisms for orientation by visual sunset cues and with the proposed basis of magnetic orientation. They do, however, demonstrate that the geomagnetic field is involved in the sunset orientation of robins, probably in combination with additional visual or non-visual cues that contribute to establish magnetic polarity.  相似文献   

5.
To analyze the wavelength dependency of magnetic compass orientation, European robins were tested during spring migration under light of various wavelengths. Under 565-nm green light (control) the birds showed excellent orientation in their migratory direction; a 120° deflection of magnetic North resulted in a corresponding shift in the birds' directional tendencies, indicating the use of the magnetic compass. Under 443-nm blue light, the robins were likewise well oriented. Under 590-nm yellow, however, oriented behavior was no longer observed, although the activity was at the same level as under blue and green light. The spectral range where magnetic orientation is possible thus differs from the range of vision, the former showing parallels to that of rhodopsin absorption. The interpretation of the abrupt change in behavior observed between 565 green to 590 yellow is unclear. There is no simple relationship between magnetoreception and the known color receptors of birds. Accepted: 17 December 1998  相似文献   

6.
Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180° when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open.  相似文献   

7.
To estimate differences in hormonal mechanisms of regulation of spring and autumn migration in European robins Erithacus rubecula, the plasma corticosterone (CORT) concentrations were compared in birds caught during both migratory seasons. A total of 414 blood samples were analyzed. It was found that the baseline and stress-induced CORT concentrations in free-living robins during spring migration were practically twice as high as during autumn passage. Our results demonstrate that autumn and spring migrations are independent stages of the avian annual cycle. Probably, the increase in the CORT concentrations in spring can be considered to be physiological preparation for the breeding season.  相似文献   

8.
Migratory birds might respond to moonlight in at least four ways: (1) a geographical reference for selecting a compass direction, (2) a celestial ‘landmark’ to facilitate maintenance of a preferred heading, (3) a stimulus that distracts migrants and introduces error in compass orientation, or (4) a source of illumination that facilitates nocturnal flight. This study examines the response of migratory savannah sparrows (Passerculus sandwichensis) to moonlight during controlled tests in orientation cages. I found no evidence that savannah sparrows use a lunar compass to select a direction. If savannah sparrows do use the moon as a ‘landmark’ to maintain a direction selected with reference to a different cue, I expected birds to be better oriented on overcast nights when the moon is present than they are when the moon is absent. The results suggest otherwise. Usually, savannah sparrows respond phototactically to the moon by directing their cage activity toward or at a constant angle with respect to the moon's azimuth. Interestingly, the migrant's response to moonlight depended on whether the bird viewed the setting sun earlier that evening.  相似文献   

9.
Recent evaluations of both temporal and spatial precision in bird migration have called for external cues in addition to the inherited programme defining the migratory journey in terms of direction, distance and fuelling behaviour along the route. We used juvenile European robins (Erithacus rubecula) to study whether geomagnetic cues affect fuel deposition in a medium-distance migrant by simulating a migratory journey from southeast Sweden to the wintering area in southern Spain. In the late phase of the onset of autumn migration, robins exposed to the magnetic treatment attained a lower fuel load than control birds exposed to the ambient magnetic field of southeast Sweden. In contrast, robins captured in the early phase of the onset of autumn migration all showed low fuel deposition irrespective of experimental treatment. These results are, as expected, the inverse of what we have found in similar studies in a long-distance migrant, the thrush nightingale (Luscinia luscinia), indicating that the reaction in terms of fuelling behaviour to a simulated southward migration varies depending on the relevance for the species. Furthermore, we suggest that information from the geomagnetic field act as an important external cue overriding the seasonal effect on fuelling behaviour in migratory birds.  相似文献   

10.
Y.B. Katz 《Animal behaviour》1985,33(3):825-828
The migratory orientation of European robins (Erithacus rubecula) in autumn was tested immediately after sunset and also after the beginning of astronomical darkness. In twilight tests under clear skies, the birds selected an appropriate migratory direction. During the course of autumn, along with the shift of sunset azimuth, the orientation of birds also shifted, always in a counter-clockwise direction. Although this shift of orientation was not statistically significant, the difference between the mean direction and the sunset was the same for each autumn period. This suggests that the migratory direction was selected on the basis of menotactic orientation re the setting sun. Random directions were observed under solid overcast skies as well as during tests under starry skies, begun after all trace of the sunset position had disappeared.  相似文献   

11.
Many passerine medium distance nocturnal migrants take off from stopover sites not only at the beginning of the night, but also in the middle and at the end of the night. In this paper, we tested two explanations for this phenomenon: (1) that departure time is governed by fuel stores, and (2) that departure time is influenced by the weather. The relationship of temporal distribution of migratory nocturnal departures with body condition and weather factors was studied in juvenile European robins (Erithacus rubecula) during autumn migration. The study was done on the Courish Spit on the Baltic Sea in 1997–2003 by retrapping 74 ringed birds in high mist nets during nocturnal migratory departure. Departure time was not related to fuel stores at arrival and departure, stopover duration, fuel deposition rate or progress of the season. Nor did the local weather at departure influence departure time. A possible reason was a large variation in the behaviour of the birds. European robins which made 1-day stopovers arrived and departed during better weather conditions than birds that stopped over for longer periods. In the former cohort, a significant model with four predictors explained 55% of variation in departure time. It is assumed that weather at the night of departure and during the previous night influenced the time of take-offs in these birds. In robins which made long stopovers, departure time is probably governed by their individual endogenous circadian rhythms of activity, which are related to the environment in a complex way.  相似文献   

12.
Experimental research on the orientation of migratory songbirds is traditionally conducted using orientation funnels or automatic registration cages that record the directional activity of individual birds on paper or a computer. Most traditionally used funnel and cage designs do not permit investigators to observe detailed behavior of the birds and, therefore, we have gained little insight into the actual behavior of birds while they are exhibiting migratory restlessness and making directional choices. Such behavior can only be studied by direct observation or by video filming. Here, we present BirdOriTrack, a video‐tracking program for extracting time‐resolved, positional data of birds (and potentially other animal species) to determine their orientation relative to the center of a circular cage/funnel. With relatively inexpensive cameras, recording equipment, and cages, orientation experiments can easily be conducted and analyzed using BirdOriTrack. The program is designed to be flexible, allowing analysis of orientation behavior of birds of any size in different cage designs and in both controlled laboratory settings and field‐based studies. To demonstrate the program's utility, we show the results of preliminary field experiments on several species of migratory birds captured at a migration monitoring station. BirdOriTrack is freely available at http://canmove.lu.se/birdoritrack .  相似文献   

13.
Many species of birds that normally migrate during the night have been observed engaging in so‐called morning flights during the early morning. The results of previous studies have supported the hypothesis that one function of morning flights is to compensate for wind drift that birds experienced during the night. Our objective was to further explore this hypothesis in a unique geographic context. We determined the orientation of morning flights along the southern shore of Lake Erie's western basin during the spring migrations of 2016 and 2017. This orientation was then compared to the observed orientation of nocturnal migration. Additionally, the orientation of the birds engaged in morning flights following nights with drifting winds was compared to that of birds following nights with non‐drifting winds. The morning flights of most birds at our observation site were oriented to the west‐northwest, following the southern coast of Lake Erie. Given that nocturnal migration was oriented generally east of north, the orientation of morning flight necessarily reflected compensation for accumulated, seasonal wind drift resulting from prevailingly westerly winds. However, the orientation of morning flights was similar following nights with drifting and non‐drifting winds, suggesting that birds on any given morning were not necessarily re‐orienting as an immediate response to drift that occurred the previous night. Given the topographical characteristics of our observation area, the west‐northwest movement of birds in our study is likely best explained as a more complex interaction that could include some combination of compensation for wind drift, a search for suitable stopover habitat, flying in a direction that minimizes any loss in progressing northward toward the migratory goal, and avoidance of a lake crossing.  相似文献   

14.
Fat reserves influence the orientation of migrating songbirds at ecological barriers, such as expansive water crossings. Upon encountering a body of water, fat migrants usually cross the barrier exhibiting 'forward' migration in a seasonally appropriate direction. In contrast, lean birds often exhibit temporary 'reverse' orientation away from the water, possibly to lead them to suitable habitats for refueling. Most examples of reverse orientation are restricted to autumn migration and, in North America, are largely limited to transcontinental migrants prior to crossing the Gulf of Mexico. Little is known about the orientation of lean birds after crossing an ecological barrier or on the way to their breeding grounds. We examined the effect of fat stores on migratory orientation of both long- and short-distance migrants before and after a water crossing near their breeding grounds; Catharus thrushes (Swainson's and gray-cheeked thrushes, C. ustulatus and C. minimus ) and white-throated sparrows Zonotrichia albicollis were tested for orientation at the south shore of Lake Ontario during spring and autumn. During both spring and autumn, fat birds oriented in a seasonally appropriate, forward direction. Lean thrushes showed a tendency for reverse orientation upon encountering water in the spring and axial, shoreline orientation after crossing water in the autumn. Lean sparrows were not consistently oriented in any direction during either season. The responses of lean birds may be attributable to their stopover ecology and seasonally-dependent habitat quality.  相似文献   

15.
Orientation of birds in total darkness   总被引:1,自引:0,他引:1  
Magnetic compass orientation of migratory birds is known to be light dependent, and radical-pair processes have been identified as the underlying mechanism. Here we report for the first time results of tests with European robins, Erithacus rubecula, in total darkness and, as a control, under 565 nm green light. Under green light, the robins oriented in their normal migratory direction, with southerly headings in autumn and northerly headings in spring. By contrast, in darkness they significantly preferred westerly directions in spring as well as autumn. This failure to show the normal seasonal change characterizes the orientation in total darkness as a "fixed direction" response. Tests in magnetic fields with the vertical or the horizontal component inverted showed that the preferred direction depended on the magnetic field but did not involve the avian inclination compass. A high-frequency field of 1.315 MHz did not affect the behavior, whereas local anesthesia of the upper beak resulted in disorientation. The behavior in darkness is thus fundamentally different from normal compass orientation and relies on another source of magnetic information: It does not involve the radical-pair mechanism but rather originates in the iron-containing receptors in the upper beak.  相似文献   

16.
In order to perform true bicoordinate navigation, migratory birds need to be able to determine geographic latitude and longitude. The determination of latitude is relatively easy from either stellar or magnetic cues [1-3], but the determination of longitude seems challenging [4, 5]. It has therefore been suggested that migrating birds are unable to perform bicoordinate navigation and that they probably only determine latitude during their return migration [5]. However, proper testing of this hypothesis requires displacement experiments with night-migratory songbirds in spring that have not been performed. We therefore displaced migrating Eurasian reed warblers (Acrocephalus scirpaceus) during spring migration about 1000 km toward the east and found that they were correcting for displacements by shifting their orientation from the northeast at the capture site to the northwest after the displacement. This new direction would lead them to their expected breeding areas. Our results suggest that Eurasian reed warblers are able to determine longitude and perform bicoordinate navigation. This finding is surprising and presents a new intellectual challenge to bird migration researchers, namely, which cues enable birds to determine their east-west position.  相似文献   

17.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

18.
We used radiotelemetry to investigate the time of migratory flight initiation relative to available celestial orientation cues and departure direction of a nocturnal passerine migrant, the reed warbler, Acrocephalus scirpaceus, during autumn migration. The study was carried out at Falsterbo, a coastal site in southwest Sweden. The warblers initiated migration from times well after local sunset and well into the night, corresponding to sun elevations between -4 degrees and -35 degrees, coinciding with the occurrence of stars at night. They departed in the expected migratory direction towards south of southwest with a few initiating migration in reverse directions towards northeast to east. Flight directions under overcast conditions (7-8/8) were more scattered than under clear sky conditions (0-4/8). There were fewer clouds on departure nights than on nights when the birds did not initiate migration. For birds staying longer than one night at stopover the horizontal visibility was higher and precipitation was less likely on departure nights than on the previous night. The results show that the visibility of celestial cues, and stars in particular, are important for the decision to initiate migration in reed warblers. However, cloud cover, horizontal visibility and precipitation might be correlated with other weather variables (i.e. wind or air pressure) that are also likely to be important for the decision to migrate. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

19.
The first solitary migration of juvenile birds is difficult to study because of a low juvenile survival rates and sometimes long delays in return to the breeding grounds. Consequently, little is known about this crucial life event for many bird species, in particular the sensory guidance mechanisms facilitating the first migratory journey. Initial orientation during the first migration is a key measure to investigate these mechanisms. Here, we developed an assay to measure initial orientation as flight direction upon first take‐off in nocturnally fledging juvenile seabirds. We dorsally deployed a coloured LED on juvenile birds to allow researchers to observe the vanishing bearings of individuals as they flew out to sea. Additionally, we co‐deployed either a small Neodymium magnet or glass bead (control) on top of the bird's head to investigate the use of magnetoreception, previously unexplored in this early life stage. We used this assay to observe the first flight of Manx shearwaters Puffinus puffinus and found that they did not orient towards their wintering ground straight after taking off. Further, we did not find an effect of the magnetic treatment on juveniles' flight direction, though whether this is due to the birds not using magnetoreception, other salient cues being available or a lack of motivation to orient to the migratory beeline is unclear. We were, however, able to identify wind direction and topography as drivers of first flight direction in Manx shearwaters, which fledged with wind component between a crosswind and a tailwind and directed their maiden flight towards the sea and away from the land. This novel assay will facilitate the study of the maiden flight of nocturnally fledging birds and will help advance the study of sensory guidance mechanisms underpinning migratory orientation in a wide range of taxa, including species which are traditionally challenging to study.  相似文献   

20.
To see whether the migratory orientation of pied flycatchers (Ficedula hypoleuca Pallas) is genetically encoded with respect to the earth magnetic field a group of young birds was hand-raised. They were thus prevented from ever experiencing the sky. The birds were tested in autumn 1980 and 1981 in the local geomagnetic field (Fig. 1) and in three artificial fields (Fig. 2a-c). The results show that their magnetic compass matures independent of any experience with the sky and contains sufficient information for the birds to orient toward their migratory direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号