首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A.  Kirichenko  S. V. 《Neurophysiology》2002,34(2-3):190-193
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes.  相似文献   

2.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

3.
Chronic stress in rodents was shown to induce structural shrinkage and functional alterations in the hippocampus that were linked to spatial memory impairments. Effects of chronic stress on the amygdala have been linked to a facilitation of fear conditioning. Although the underlying molecular mechanisms are still poorly understood, increasing evidence highlights the neural cell adhesion molecule (NCAM) as an important molecular mediator of stress‐induced structural and functional alterations. In this study, we investigated whether altered NCAM expression levels in the amygdala might be related to stress‐induced enhancement of auditory fear conditioning and anxiety‐like behavior. In adult C57BL/6J wild‐type mice, chronic unpredictable stress resulted in an isoform‐specific increase of NCAM expression (NCAM‐140 and NCAM‐180) in the amygdala, as well as enhanced auditory fear conditioning and anxiety‐like behavior. Strikingly, forebrain‐specific conditional NCAM‐deficient mice (NCAM‐floxed mice that express the cre‐recombinase under the control of the promoter of the α‐subunit of the calcium‐calmodulin‐dependent protein kinase II), whose amygdala NCAM expression levels are reduced, displayed impaired auditory fear conditioning which was not altered following chronic stress exposure. Likewise, chronic stress in these conditional NCAM‐deficient mice did not modify NCAM expression levels in the amygdala or hippocampus, while they showed enhanced anxiety‐like behavior, questioning the involvement of NCAM in this type of behavior. Together, our results strongly support the involvement of NCAM in the amygdala in the consolidation of auditory fear conditioning and highlight increased NCAM expression in the amygdala among the mechanisms whereby stress facilitates fear conditioning processes.  相似文献   

4.
神经系统的形成依赖于细胞间的互相粘连。本文综述了神经细胞粘连分子(NCAM)及其多聚唾液酸(PSA)组份对神经发育和再生的作用。NCAM的基本功能是介导细胞粘连,PSA则由于其特殊的分子结构而降低细胞间的粘连。研究表明,鸡胚的发育过程中,PSA含量在三个关键时期表达的高低决定了运动神经元能否准确地识别和支配肌肉。成年大鼠周围神经损伤后,肌肉内NCAM含量的高低决定于该肌肉的神经支配状况。成年大鼠脑内,切断内嗅皮层与海马的神经联系,发现齿回外分子层PSA含量显著增加,并至少可持续60天。已有的研究资料提示在去神经靶区域PSA的重新表达可能有利于移植神经元轴突的生长并与宿主重建突触联系。  相似文献   

5.
We studied the effects of i.p. injection of melatonin in pharmacotherapeutic doses and of constant illumination (a melatonin synthesis-suppressing factor) on the behavior of rats in the open-field test and on the content of the main isoforms of neural cell adhesion molecule (NCAM) in the hippocampus, cerebellum, and neocortex of these animals. In the studied brain structures of the rats kept under conditions preventing the melatonin synthesis, we observed suppression of the behavioral activity of animals and a decrease in the expression of the NCAM180 isoform. In rats injected with 10 mg/kg melatonin, changes in the behavioral activity were insignificant. In the hippocampus and neocortex of rats of this group, the NCAM180 content increased. Our experiments showed that melatonin can be involved in the control of balance of the expression of different NCAM isoforms. Such a balance is a crucial factor determining plastic rearrangements of the synaptic contacts.  相似文献   

6.
Hu ZA  Tan YL  Luo J  Li HD  Li XC  Yu ZP 《生理学报》2004,56(1):89-94
既往研究发现,神经细胞粘附分子(neural cell adhesion molecules,NCAM)对海马CA1区突触传递长时程增强(longterm potentiation,LTP)的诱导和维持极为关键。本文采用原位杂交法和Western blot法,观察了大鼠海马腑片LTP诱导和维持过程中NCAM mRNA和蛋白水平的动态变化过程。结果显示,强直刺激诱发fEPSP斜率升高10 min时,海马CA1区NCAM mRNA染色阳性神经元数量显著增加(76.6±11.5个),NCAM蛋白水平亦明显升高(7.190±0.64任意单位/50μg蛋白)。强直刺激诱发fEPSP斜率升高1 h时,NCAM mRNA染色阳性神经元数量为73.3±14.0个,NCAM蛋白量为9.031±0.71任意单位/50 μg蛋白;与强直刺激后10 min比较,NCAM mRNA表达无显著变化,而NCAM蛋白水平变化明显。NMDA受体特异阻断剂AP-5在损害LTP的同时,显著抑制NCAM mRNA和蛋白的增加。实验结果表明,在大鼠海马LTP诱导和维持过程中,NCAM mRNA增强的表达相对稳定,而NCAM蛋白水平呈现先低后高的变化。  相似文献   

7.
目的:探究缺血性脑损伤后,黄芪多糖(AG)对海马CA1区神经元重塑中粘附分子(NCAM)以及c-fos表达的影响。方法:取Wistar雄性大鼠100只,随机分成假手术组(SOG)、模型组(MG-1d,3d,7d),低剂量黄芪多糖治疗组(L-AGTG-1d,3d,7d),高剂量黄芪多糖治疗组(H-AGTG-1d,3d,7d),每组10只。所有MG和AGTG组颈部切开阻断右侧大脑中动脉,造成缺血性脑损伤后,AGTG组腹腔注射AG(5 mg/kg和15 mg/kg)。于1 d,3 d和7 d分别脑血流再灌注,随即评分神经功能缺损情况后取材,测算神经元凋亡数,免疫组织化学法和RT-PCR法半定量分析检测海马CA1区神经元NCAM和c-fos的表达。结果:L-AGTG和H-AGTG的神经功能缺损评分和海马神经元凋亡数显著低于MG(P<0.05或P<0.01),海马CA1区NCAM和c-fos的表达显著高于MG(P<0.05或P<0.01)。结论:黄芪多糖改善缺血性脑损伤大鼠的神经功能,可能与促进海马NCAM和c-fos表达,而阻止或逆转海马神经元凋亡有关。  相似文献   

8.
Genetic evidence indicates that cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) are critical for activity-dependent synapse formation at the neuromuscular junction in Drosophila and have also been implicated in synaptic remodelling during learning in Aplysia (see [1] for review). In mammals, a widely adopted model for the process of learning at the cellular level is long-term potentiation (LTP) in the hippocampal formation. Studies in vitro have shown that antibodies to the IgCAMs L1 and NCAM reduce LTP in CA1 neurons of rat hippocampus, suggesting a role for these molecules in the modulation of synaptic efficacy, perhaps by regulating synaptic remodelling [2]. A role for NCAM in LTP has been confirmed in mice lacking NCAM [3] (but see [4]), but similar studies have not been reported for L1. Here we examine LTP in the hippocampus of mice lacking L1 [5,6], using different experimental protocols in three different laboratories. In tests of LTP in vitro and in vivo we found no significant differences between mutant animals and controls. Thus, contrary to expectation, our data suggest that L1 function is not necessary for the establishment or maintenance of LTP in the hippocampus. Impaired performance in spatial learning exhibited by L1 mutants may therefore not be due to hippocampal dysfunction [6].  相似文献   

9.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

10.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

11.
12.
13.
Although generally accepted to play an important role in development, the precise functional significance of NCAM remains to be elucidated. Correlative and interventive studies suggest a role for polysialylated NCAM in neurite elaboration. In the adult NCAM polysialylation continues to be expressed in regions of the central nervous system which retain neuroplastic potential. During memory formation modulation of polysialylation on the synapse-enriched isoform of NCAM occurs in the hippocampus. The polysialylated neurons of this structure have been located at the border of the granule cell layer and hilar region of the dentate and their number increases dramatically during memory consolidation. The converse is also true for a profound decline in the basal number of polysialylated neurons occurs with ageing when neural plasticity becomes attenuated. In conclusion, it is suggested that NCAM polysialylation regulates ultrastructural plasticity associated with synaptic elaboration.Abbreviations PSA polysialic acid - NCAM neural cell adhesion molecule - SGL sub-granular cell layer - MF mossy fibers Special issue dedicated to Dr. Robert Balazs.  相似文献   

14.
The neural cell adhesion molecule (NCAM) plays important roles in development of the nervous system and in synaptic plasticity and memory formation in the adult. The present study sought to further investigate the role of NCAM in learning by testing habituation and footshock sensitization learning of the startle response (SR) in NCAM null mutant (NCAM-/-) and wildtype littermate (NCAM+/+) mice. Whereas habituation is a form of non-associative learning, footshock sensitization is induced by rapid contextual fear conditioning. Habituation was tested by repetitive presentation of acoustic and tactile startle stimuli. Although NCAM-/- mice showed differences in sensitivity in both stimulus modalities, habituation learning was intact in NCAM-/- mice, suggesting that NCAM does not play a role in the mechanisms underlying synaptic plasticity in the startle pathway. Footshock sensitization was elicited by presentation of electric footshocks between two series of acoustic stimuli. In contrast to habituation, footshock sensitization learning was attenuated in NCAM-/- mice: the acoustic SR increase after the footshocks was lower in the mutant than in wildtype mice, indicating that NCAM plays an important role in the relevant brain areas, such as amygdala and/or the hippocampus.  相似文献   

15.
Zhernosekov  D. D.  Nerush  P. A. 《Neurophysiology》2000,32(6):368-370
A comparative study of the role of specific adhesion proteins, NCAM (neuronal cell adhesion molecules) and N-cadherin, was carried out on rats subjected to passive avoidance training procedure. It was shown that antibodies against the Ca2+-dependent adhesion protein N-cadherin injected into the rat somatosensory cortical zone 6 h after passive avoidance training had been completed did not evoke a loss of the habit by experimental animals. At the same time, an absolute amnestic effect with respect to this reflex developed after injection of antibodies against NCAM. After injection of antibodies against the above-mentioned proteins into the dorsal part of the hippocampus, the avoidance habit also disappeared in the case of treatment with antibodies against NCAM and was kept under the influence of antibodies against N-cadherin. The data obtained testify that NCAM and N-cadherin play dissimilar roles in the formation of a memory trace in the course of training.  相似文献   

16.
Prior studies in our laboratory have demonstrated an association of specific gap junction proteins with intramembranous bone formation in the avian mandible. The purpose of the present study was to extend these observations by determining if there was a relationship between the expression of one of the gap junction proteins examined previously (connexin43) and the expression of specific cell adhesion (CAM) and/or substrate adhesion (SAM) molecules [i.e. NCAM, A-CAM (N-cadherin) and tenascin (tenascin-C)] that have previously been shown to be associated with bone formation. Immunohistochemical localization of connexin43, tenascin, NCAM and N-cadherin was performed on serial sections of mandibles of chick embryos from 6 to 12 days of incubation. Analysis of adjacent serial sections revealed that the NCAM and tenascin immunostaining that appeared initially on the lateral aspect of Meckel's cartilage preceded the overt expression of trabecular bone. At subseq uent stages, NCAM and tenascin staining gradually overlapped the region of connexin43 expression. In contrast, the expression of N-cadherin was found to colocalize with that of connexin43 from the first appearance of connexin43 expression. Most significantly, although the domains of NCAM and tenascin expression were initially separate from that of connexin43, bone formation originated only in the region where these domains intersected. These findings suggest that, of the CAMs and SAMs examined, N-cadherin appears to be associated with the establishment of cell contacts responsible for the presence and/or maintenance of connexin43-mediated gap junctional communication, while tenascin and NCAM appear to be associated, in a more specific manner, with processes that accompany the overt expression of the osteogenic phenotype. © 1998 Chapman & Hall  相似文献   

17.
In the present study effect of dietary restriction (DR) on neuronal plasticity markers neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) was assessed following brain injury by intraperitoneal injection of kainic acid or physiological saline in adult male wistar rats. After 7-day recovery period, rats were sacrificed to study the NCAM-ir, PSA-NCAM-ir, and GFAP-ir in all the groups with immunohistofluorescence and immunoblotting. We noticed increase in NCAM and PSA-NCAM expression after KA excitotoxicity, and DR enhanced this increase in NCAM and PSA-NCAM expression. A marked increase in NCAM and PSA-NCAM-ir was observed in CA3 region of hippocampus, subgranular region and hilus of dentate gyrus, hypothalamus, and piriform cortex in both vehicle treated as well KA-treated DR rats as compared to vehicle and KA-treated AL rats, respectively. Whenever, CNS is damaged it undergoes an injury response called reactive gliosis. Our study confirmed the neuroprotective role of DR as evident from attenuation of GFAP-ir and enhanced levels of neuronal plasticity markers NCAM and PSA-NCAM. The potential beneficial role of DR regimen in attenuating KA-induced reactive astrogliosis and enhancing expression of neuronal plasticity markers may point the way to new strategies of intervention therapy by DR that will facilitate recovery from ageing and disease related neuronal dysfunction and enhance restorative processes by modulating astrogliosis.  相似文献   

18.
Monolayers of control 3T3 fibroblasts and 3T3 cells expressing transfected NCAM or N-cadherin have been used as a culture substratum for rat hippocampal neurons. Both NCAM and N-cadherin are expressed in the hippocampus through embryonic day 17 (E17) to postnatal day 4 (PND4); however, whereas E17 neurons responded to transfected NCAM by extending considerably longer neurites, PND4 neurons responded very poorly. The converse was true for responsiveness to N-cadherin. These data demonstrate a switch in neuronal responsiveness to NCAM and N-cadherin in the developing hippocampus. NCAM-dependent neurite outgrowth from E17 neurons was largely dependent on the presence of alpha 2-8-linked polysialic acid (PSA) on neuronal NCAM. NCAM-dependent neurite outgrowth could be fully inhibited by pertussis toxin or a combination of L- and N-type calcium channel antagonists thus providing direct evidence concerning the nature of the second messenger pathway activated in primary neurons by cell adhesion molecules (CAMs).  相似文献   

19.
In hippocampal neurons and transfected CHO cells, neural cell adhesion molecule (NCAM) 120, NCAM140, and NCAM180 form Triton X-100-insoluble complexes with betaI spectrin. Heteromeric spectrin (alphaIbetaI) binds to the intracellular domain of NCAM180, and isolated spectrin subunits bind to both NCAM180 and NCAM140, as does the betaI spectrin fragment encompassing second and third spectrin repeats (betaI2-3). In NCAM120-transfected cells, betaI spectrin is detectable predominantly in lipid rafts. Treatment of cells with methyl-beta-cyclodextrin disrupts the NCAM120-spectrin complex, implicating lipid rafts as a platform linking NCAM120 and spectrin. NCAM140/NCAM180-betaI spectrin complexes do not depend on raft integrity and are located both in rafts and raft-free membrane domains. PKCbeta2 forms detergent-insoluble complexes with NCAM140/NCAM180 and spectrin. Activation of NCAM enhances the formation of NCAM140/NCAM180-spectrin-PKCbeta2 complexes and results in their redistribution to lipid rafts. The complex is disrupted by the expression of dominant-negative betaI2-3, which impairs binding of spectrin to NCAM, implicating spectrin as the bridge between PKCbeta2 and NCAM140 or NCAM180. Redistribution of PKCbeta2 to NCAM-spectrin complexes is also blocked by a specific fibroblast growth factor receptor inhibitor. Furthermore, transfection with betaI2-3 inhibits NCAM-induced neurite outgrowth, showing that formation of the NCAM-spectrin-PKCbeta2 complex is necessary for NCAM-mediated neurite outgrowth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号