首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
During each cell cycle, the yeast vacuole actively partitions between mother and daughter cells. This process requires actin, profilin, an unconventional myosin (Myo2p), and Vac8p. A mutant yeast strain, vac8, is defective in vacuole inheritance, specifically, in early vacuole migration. Vac8p is a 64-kD protein found on the vacuole membrane, a site consistent with its role in vacuole inheritance. Both myristoylation and palmitoylation are required for complete Vac8p localization. Interestingly, whereas myristoylation of Vac8p is not required for vacuole inheritance, palmitoylation is essential. Thus, palmitoylation appears to play a more direct role in vacuole inheritance. Most of the VAC8 sequence encodes 11 armadillo (Arm) repeats. Arm repeats are thought to mediate protein–protein interactions, and many Arm proteins have multiple functions. This is also true for Vac8p. In addition to its role in early vacuole inheritance, Vac8p is required to target aminopeptidase I from the cytoplasm to the vacuole. Mutant analysis demonstrates that Vac8p functions separately in these two processes. Vac8p cosediments with actin filaments. Vac8p is related to β-catenin and plakoglobin, which connect a specific region of the plasma membrane to the actin cytoskeleton. In analogy, Vac8p may link the vacuole to actin during vacuole partitioning.  相似文献   

2.
Activated fatty acids stimulate budding and fusion in several cell-free assays for vesicular transport. This stimulation is thought to be due to protein palmitoylation, but relevant substrates have not yet been identified. We now report that Vac8p, a protein known to be required for vacuole inheritance, becomes palmitoylated when isolated yeast vacuoles are incubated under conditions that allow membrane fusion. Similar requirements for Vac8p palmitoylation and vacuole fusion, the inhibition of vacuole fusion by antibodies to Vac8p and the strongly reduced fusion of vacuoles lacking Vac8p suggest that palmitoylated Vac8p is essential for homotypic vacuole fusion. Strikingly, palmitoylation of Vac8p is blocked by the addition of antibodies to Sec18p (yeast NSF) only. Consistent with this, a portion of Vac8p is associated with the SNARE complex on vacuoles, which is lost during Sec18p- and ATP-dependent priming. During or after SNARE complex disassembly, palmitoylation occurs and anchors Vac8p to the vacuolar membrane. We propose that palmitoylation of Vac8p is regulated by the same machinery that controls membrane fusion.  相似文献   

3.
The yeast vacuole functions both as a degradative organelle and as a storage depot for small molecules and ions. Vacuoles are dynamic reticular structures that appear to alternately fuse and fragment as a function of growth stage and environment. Vac8p, an armadillo repeat-containing protein, has previously been shown to function both in vacuolar inheritance and in protein targeting from the cytoplasm to the vacuole. Both myristoylation and palmitoylation of Vac8p are required for its efficient localization to the vacuolar membrane (Y.-X. Wang, N. L. Catlett, and L. S. Weisman, J. Cell Biol. 140:1063-1074, 1998). We report that mutants with conditional defects in the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase (ACC1), display unusually multilobed vacuoles, similar to those observed in vac8 mutant cells. This vacuolar phenotype of acc1 mutant cells was shown biochemically to be accompanied by a reduced acylation of Vac8p which was alleviated by fatty acid supplementation. Consistent with the proposed defect of acc1 mutant cells in acylation of Vac8p, vacuolar membrane localization of Vac8p was impaired upon shifting acc1 mutant cells to nonpermissive condition. The function of Vac8p in protein targeting, on the other hand, was not affected under these conditions. These observations link fatty acid synthesis and availability to direct morphological alterations of an organellar membrane.  相似文献   

4.
Palmitoylation of the vacuolar membrane protein Vac8p is essential for vacuole fusion in yeast (Veit, M., R. Laage, L. Dietrich, L. Wang, and C. Ungermann. 2001. EMBO J. 20:3145-3155; Wang, Y.X., E.J. Kauffman, J.E. Duex, and L.S. Weisman. 2001. J. Biol. Chem. 276:35133-35140). Proteins that contain an Asp-His-His-Cys (DHHC)-cysteine rich domain (CRD) are emerging as a family of protein acyltransferases, and are therefore candidates for mediators of Vac8p palmitoylation. Here we demonstrate that the DHHC-CRD proteins Pfa3p (protein fatty acyltransferase 3, encoded by YNL326c) and Swf1p are important for vacuole fusion. Cells lacking Pfa3p had fragmented vacuoles when stressed, and cells lacking both Pfa3p and Swf1p had fragmented vacuoles under normal growth conditions. Pfa3p promoted Vac8p membrane association and palmitoylation in vivo and partially purified Pfa3p palmitoylated Vac8p in vitro, establishing Vac8p as a substrate for palmitoylation by Pfa3p. Vac8p is the first N-myristoylated, palmitoylated protein identified as a substrate for a DHHC-CRD protein.  相似文献   

5.
A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.  相似文献   

6.
The discovery of molecules required for membrane fusion has revealed a remarkably conserved mechanism that centers upon the formation of a complex of SNARE proteins. However, whether the SNARE proteins or other components catalyze the final steps of membrane fusion in vivo remains unclear. Understanding this last step depends on the identification of molecules that act late in the fusion process. Here we demonstrate that in Saccharomyces cerevisiae, Vac8p, a myristoylated and palmitoylated armadillo repeat protein, is required for homotypic vacuole fusion. Vac8p is palmitoylated during the fusion reaction, and the ability of Vac8p to be palmitoylated appears to be necessary for its function in fusion. Both in vivo and in vitro analyses show that Vac8p functions after both Rab-dependent vacuole docking and the formation of trans-SNARE pairs. We propose that Vac8p may bind the fusion machinery through its armadillo repeats and that palmitoylation brings this machinery to a specialized lipid domain that facilitates bilayer mixing.  相似文献   

7.
We have identified the Pichia pastoris Vac8 homolog, a 60-64 kDa armadillo repeat protein, and have examined the role of PpVac8 in the degradative pathways involving the yeast vacuole. We report here that PpVac8 is required for glucose-induced pexophagy, but not ethanol-induced pexophagy or starvation-induced autophagy. This has been demonstrated by the persistence of peroxisomal alcohol oxidase activity in mutants lacking PpVac8 during glucose adaptation. During glucose-induced micropexophagy, in the absence of PpVac8, the vacuole was invaginated with arm-like "segmented" extensions that almost completely surrounded the adjacent peroxisomes. Vac8-GFP was found at the vacuolar membrane and concentrated at the base of the arm-like protrusions that extend from the vacuole to sequester the peroxisomes. The localization of Vac8-GFP to the vacuolar membrane occurred independent of PpAtg1, PpAtg9 or PpAtg11. Mutagenesis of the palmitoylated cysteines to alanines or deletion of the myristoylation and palmitoylation sites of PpVac8 resulted in decreased protein stability, impaired vacuolar association and reduced degradation of peroxisomal alcohol oxidase. Deletion of the central armadillo repeat domains of the PpVac8 did not alter its association with the vacuolar membrane, but resulted in a non-functional protein that suppressed the formation of the arm-like extensions from the vacuole to engulf the peroxisomes. PpVac8 is essential for the trafficking of PpAtg11, but not PpAtg1 or PpAtg18, to the vacuole membrane. Together, our results support a role for PpVac8 in early (formation of sequestering membranes) and late (post-MIPA membrane fusion) molecular events of glucose-induced pexophagy.  相似文献   

8.
The NSF homolog Sec18 initiates fusion of yeast vacuoles by disassembling cis-SNARE complexes during priming. Sec18 is also required for palmitoylation of the fusion factor Vac8, although the acylation machinery has not been identified. Here we show that the SNARE Ykt6 mediates Vac8 palmitoylation and acts during a novel subreaction of vacuole fusion. This subreaction is controlled by a Sec17-independent function of Sec18. Our data indicate that Ykt6 presents Pal-CoA via its N-terminal longin domain to Vac8, while transfer to Vac8's SH4 domain occurs spontaneously and not enzymatically. The conservation of Ykt6 and its localization to several organelles suggest that its acyltransferase activity may also be required in other intracellular fusion events.  相似文献   

9.
The cyclin-dependent kinase Cdk1 directly regulates vacuole inheritance   总被引:1,自引:0,他引:1  
In budding yeast, vacuole inheritance is tightly coordinated with the cell cycle. The movement of vacuoles and several other organelles is actin-based and is mediated by interaction between the yeast myosin V motor Myo2 and organelle-specific adaptors. Myo2 binds to vacuoles via the adaptor protein Vac17, which binds to the vacuole membrane protein Vac8. Here we show that the yeast cyclin-dependent kinase Cdk1 phosphorylates Vac17 and that phosphorylation of Vac17 parallels cell cycle-dependent movement of the vacuole. Substitution of the Cdk1 sites in Vac17 decreases its interaction with Myo2 and causes a partial defect in vacuole inheritance. This defect is enhanced in the presence of Myo2 with mutated phosphorylation sites. Thus, Cdk1 appears to control the timing of vacuole movement. The presence of multiple predicted Cdk1 sites in other organelle-specific myosin V adaptors suggests that the inheritance of other cytoplasmic organelles may be regulated by a similar mechanism.  相似文献   

10.
Palmitoylation of the yeast vacuolar protein Vac8 is important for its role in membrane-mediated events such as vacuole fusion. It has been established both in vivo and in vitro that Vac8 is palmitoylated by the Asp-His-His-Cys (DHHC) protein Pfa3. However, the determinants of Vac8 critical for recognition by Pfa3 have yet to be elucidated. This is of particular importance because of the lack of a consensus sequence for palmitoylation. Here we show that Pfa3 was capable of palmitoylating each of the three N-terminal cysteines of Vac8 and that this reaction was most efficient when Vac8 is N-myristoylated. Additionally, when we analyzed the Src homology 4 (SH4) domain of Vac8 independent of the rest of the protein, palmitoylation by Pfa3 still occurred. However, the specificity of palmitoylation seen for the full-length protein was lost, and the SH4 domain was palmitoylated by all five of the yeast DHHC proteins tested. These data suggested that a region of the protein C-terminal to the SH4 domain was important for conferring specificity of palmitoylation. This was confirmed by use of a chimeric protein in which the SH4 domain of Vac8 was swapped for that of Meh1, another palmitoylated and N-myristoylated protein in yeast. In this case we saw specificity mimic that of wild type Vac8. Competition experiments revealed that the 11th armadillo repeat of Vac8 is an important element for recognition by Pfa3. This demonstrates that regions distant from the palmitoylated cysteines are important for recognition by DHHC proteins.  相似文献   

11.
Vac8p is a vacuolar membrane protein that is required for efficient vacuole inheritance and fusion, cytosol-to-vacuole targeting, and sporulation. By analogy to other armadillo domain proteins, including beta-catenin and importin alpha, we hypothesize that Vac8p docks various factors at the vacuole membrane. Two-hybrid and copurfication assays demonstrated that Vac8p does form complexes with multiple binding partners, including Apg13p, Vab2p, and Nvj1p. Here we describe the surprising role of Vac8p-Nvj1p complexes in the formation of nucleus-vacuole (NV) junctions. Nvj1p is an integral membrane protein of the nuclear envelope and interacts with Vac8p in the cytosol through its C-terminal 40-60 amino acids (aa). Nvj1p green fluorescent protein (GFP) concentrated in small patches or rafts at sites of close contact between the nucleus and one or more vacuoles. Previously, we showed that Vac8p-GFP concentrated in intervacuole rafts, where is it likely to facilitate vacuole-vacuole fusion, and in "orphan" rafts at the edges of vacuole clusters. Orphan rafts of Vac8p red-sifted GFP (YFP) colocalize at sites of NV junctions with Nvj1p blue-sifted GFP (CFP). GFP-tagged nuclear pore complexes (NPCs) were excluded from NV junctions. In vac8-Delta cells, Nvj1p-GFP generally failed to concentrate into rafts and, instead, encircled the nucleus. NV junctions were absent in both nvj1-Delta and vac8-Delta cells. Overexpression of Nvj1p caused the profound proliferation of NV junctions. We conclude that Vac8p and Nvj1p are necessary components of a novel interorganelle junction apparatus.  相似文献   

12.
Yeast vacuole fusion requires palmitoylated Vac8. We previously showed that Vac8 acylation occurs early in the fusion reaction, is blocked by antibodies against Sec18 (yeast N-ethylmaleimide-sensitive fusion protein (NSF)), and is mediated by the R-SNARE Ykt6. Here we analyzed the regulation of this reaction on purified vacuoles. We show that Vac8 acylation is restricted to a narrow time window, is independent of ATP hydrolysis by Sec18, and is stimulated by the ion chelator EDTA. Analysis of vacuole protein complexes indicated that Ykt6 is part of a complex distinct from the second R-SNARE, Nyv1. We speculate that during vacuole fusion, Nyv1 is the classical R-SNARE, whereas the Ykt6-containing complex has a novel function in Vac8 palmitoylation.  相似文献   

13.
The endothelial nitric-oxide synthase (eNOS), a key signaling protein, undergoes a series of covalent modifications, including co-translational N-myristoylation at Gly(2), as well as post-translational thiopalmitoylation at Cys(15) and Cys(26). Myristoylation of eNOS is required for the subsequent palmitoylation of the enzyme, and both acylations are required for the efficient subcellular targeting of eNOS to plasmalemmal caveolae. We constructed chimeric cDNAs encoding proteins comprised of various acylation-deficient eNOS mutants fused at their N termini to the hydrophobic transmembrane domain of the glycoprotein CD8 and characterized these constructs in transient transfection experiments in COS-7 cells. One construct (termed CD8-myr(-)eNOS) encodes a fusion protein comprised of the eNOS myristoylation-deficient mutant coupled to the CD8 transmembrane domain. In biosynthetic labeling experiments using [(3)H]palmitic acid, we found that the CD8-myr(-)eNOS chimera undergoes palmitoylation. Subcellular fractionation showed that the CD8-myr(-)eNOS chimera is targeted to caveolae. We also constructed and characterized a cDNA encoding the CD8 transmembrane domain fused to the palmitoylation-deficient mutant eNOS (in which Cys(15) and Cys(26) are changed to serine). This chimera (termed CD8-myr(-).palm(-)eNOS) did not undergo palmitoylation, indicating that the palmitoylation seen with the CD8. myr(-)eNOS fusion protein occurs on the same residues as in the wild-type enzyme. Importantly, the CD8-myr(-).palm(-)eNOS fusion protein remained efficiently targeted to caveolae, in contrast to the palm(-)eNOS mutant lacking the CD8 transmembrane domain, which has nominal caveolar localization. A construct encoding the CD8 transmembrane domain alone was insufficient for selective targeting to caveolae. These results indicate that membrane targeting per se, but not necessarily myristoylation, is sufficient for eNOS palmitoylation and localization to plasmalemmal caveolae, and suggest further that sequences within eNOS itself, in addition to its palmitoylation sites, facilitate the selective localization of the enzyme within caveolae.  相似文献   

14.
《Autophagy》2013,9(4):280-288
We have identified the Pichia pastoris Vac8 homolog, a 60-64 kDa armadillo repeat protein, and have examined the role of PpVac8 in the degradative pathways involving the yeast vacuole. We report here that PpVac8 is required for glucose-induced pexophagy and mitophagy, but not ethanol-induced pexophagy or starvation-induced autophagy. This has been demonstrated by the persistence of peroxisomal alcohol oxidase activity and GFP-labeled mitochondria in mutants lacking PpVac8 during glucose adaptation. During glucose-induced micropexophagy, in the absence of PpVac8, the vacuole was invaginated with arm-like “segmented” extensions that almost completely surrounded the adjacent peroxisomes. PpVac8-GFP was found at the vacuolar membrane and concentrated at the base of the sequestering membranes that extend from the vacuole to engulf the peroxisomes. The localization of PpVac8-GFP to the vacuolar membrane occurred independent of PpAtg1, PpAtg9 or PpAtg11. Mutagenesis of the palmitoylated cysteines to alanines or deletion of the myristoylation and palmitoylation sites of PpVac8, resulted in an impaired vacuolar association and decreased degradation of alcohol oxidase. Deletion of the central armadillo repeat domains of the PpVac8 did not alter its association with the vacuolar membrane, but resulted in a nonfunctional protein that suppressed the formation of the arm-like extensions from the vacuole to engulf the peroxisomes. PpVac8 is essential for the trafficking of PpAtg11, but not PpAtg1 or PpAtg18, to the vacuole membrane. Together, our results support a role for PpVac8 in early (formation of sequestering membranes) and late (post-MIPA membrane fusion) molecular events of glucose-induced pexophagy.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae, phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is synthesized by a single phosphatidylinositol 3-phosphate 5-kinase, Fab1. Cells deficient in PtdIns(3,5)P2 synthesis exhibit a grossly enlarged vacuole morphology, whereas increased levels of PtdIns(3,5)P2 provokes the formation of multiple small vacuoles, suggesting a specific role for PtdIns(3,5)P2 in vacuole size control. Genetic studies have indicated that Fab1 kinase is positively regulated by Vac7 and Vac14; deletion of either gene results in ablation of PtdIns(3,5)P2 synthesis and the formation of a grossly enlarged vacuole. More recently, a suppressor of vac7Delta mutants was identified and shown to encode a putative phosphoinositide phosphatase, Fig4. We demonstrate that Fig4 is a magnesium-activated PtdIns(3,5)P2-selective phosphoinositide phosphatase in vitro. Analysis of a Fig4-GFP fusion protein revealed that the Fig4 phosphatase is localized to the limiting membrane of the vacuole. Surprisingly, in the absence of Vac14, Fig4-GFP no longer localizes to the vacuole. However, Fig4-GFP remains localized to the grossly enlarged vacuoles of vac7 deletion mutants. Consistent with these observations, we found that Fig4 physically associates with Vac14 in a common membrane-associated complex. Our studies indicate that Vac14 both positively regulates Fab1 kinase activity and directs the localization/activation of the Fig4 PtdIns(3,5)P2 phosphatase.  相似文献   

16.
Vac8p, an armadillo (ARM) repeat protein, is required for multiple vacuolar processes. It functions in vacuole inheritance, cytoplasm-to-vacuole protein targeting pathway, formation of the nucleus-vacuole junction and vacuole-vacuole fusion. These functions each utilize a distinct Vac8p-binding partner. Here, we report an additional Vac8p function: caffeine resistance. We show that Vac8p function in caffeine resistance is mediated via a newly identified Vac8p-binding partner, Tco89p. The interaction between Vac8p and each binding partner requires an overlapping subset of Vac8p ARM repeats. Moreover, these partners can compete with each other for access to Vac8p. Furthermore, Vac8p is enriched in three separate subdomains on the vacuole, each with a unique binding partner dedicated to a different vacuolar function. These findings suggest that a major role of Vac8p is to spatially separate multiple functions thereby enabling vacuole inheritance to occur concurrently with other vacuolar processes.  相似文献   

17.
Asp-His-His-Cys (DHHC) cysteine-rich domain (CRD) acyltransferases are polytopic transmembrane proteins that are found along the endomembrane system of eukaryotic cells and mediate palmitoylation of peripheral and integral membrane proteins. Here, we address the in vivo substrate specificity of five of the seven DHHC acyltransferases for peripheral membrane proteins by an overexpression approach. For all analysed DHHC proteins we detect strongly overlapping substrate specificity. In addition, we now show acyltransferase activity for Pfa5. More importantly, the DHHC protein Pfa3 is able to trap several substrates at the vacuole. For Pfa3 and its substrate Vac8, we can distinguish two consecutive steps in the acylation reaction: an initial binding that occurs independently of its central cysteine in the DHHC box, but requires myristoylation of its substrate Vac8, and a DHHC-motif dependent acylation. Our data also suggest that proteins can be palmitoylated on several organelles. Thus, the intracellular distribution of DHHC proteins provides an acyltransferase network, which may promote dynamic membrane association of substrate proteins.  相似文献   

18.
Transport along the endolysosomal system requires multiple fusion events at early and late endosomes. Deletion of several endosomal fusion factors, including the Vac1 tether and the Class C core vacuole/endosome tethering (CORVET) complex-specific subunits Vps3 and Vps8, results in a class D vps phenotype. As these mutants have an apparently similar defect in endosomal transport, we asked whether CORVET and Vac1 could still act in distinct tethering reactions. Our data reveal that CORVET mutants can be rescued by Vac1 overexpression in the endocytic pathway but not in CPY or Cps1 sorting to the vacuole. Moreover, when we compared the ultrastructure, CORVET mutants were most similar to deletions of the Rab Vps21 and its guanine nucleotide exchange factor Vps9 and different from vac1 deletion, indicating separate functions. Likewise, CORVET still localized to endosomes even in the absence of Vac1, whereas Vac1 localization became diffuse in CORVET mutants. Importantly, CORVET localization requires the Rab5 homologs Vps21 and Ypt52, whereas Vac1 localization is strictly Vps21-dependent. In this context, we also uncover that Muk1 can compensate for loss of Vps9 in CORVET localization, indicating that two Rab5 guanine nucleotide exchange factors operate in the endocytic pathway. Overall, our study reveals a unique role of CORVET in the sorting of biosynthetic cargo to the vacuole/lysosome.  相似文献   

19.
Vacuole fusion requires Sec18p-dependent acylation of the armadillo-repeat protein Vac8p that has been isolated with cis-SNARE complexes. To gain more insight into the mechanism of acylation, we analyzed the palmitoylation reaction on isolated vacuoles or in vacuolar detergent extracts. Recombinant Vac8p is palmitoylated when added to vacuoles and is anchored to membranes after modification. The palmitoyl acyltransferase (PAT) extracted from vacuolar membranes is functional in detergent extracts and shows all characteristics of an enzymatic activity: It modifies exogenous Vac8p in a temperature-, dose- and time-dependent manner, and is sensitive to bromo-palmitate, a known inhibitor of protein palmitoylation in vivo. Importantly, PAT is specific for palmitoyl-CoA, since myristoyl- and stearyl-CoA can compete with labeled Pal-CoA only at 10-fold higher amounts.  相似文献   

20.
The lipid kinase Fab1 governs yeast vacuole homeostasis by generating PtdIns(3,5)P(2) on the vacuolar membrane. Recruitment of effector proteins by the phospholipid ensures precise regulation of vacuole morphology and function. Cells lacking the effector Atg18p have enlarged vacuoles and high PtdIns(3,5)P(2) levels. Although Atg18 colocalizes with Fab1p, it likely does not directly interact with Fab1p, as deletion of either kinase activator-VAC7 or VAC14-is epistatic to atg18Delta: atg18Deltavac7Delta cells have no detectable PtdIns(3,5)P(2). Moreover, a 2xAtg18 (tandem fusion) construct localizes to the vacuole membrane in the absence of PtdIns(3,5)P(2), but requires Vac7p for recruitment. Like the endosomal PtdIns(3)P effector EEA1, Atg18 membrane binding may require a protein component. When the lipid requirement is bypassed by fusing Atg18 to ALP, a vacuolar transmembrane protein, vac14Delta vacuoles regain normal morphology. Rescue is independent of PtdIns(3,5)P(2), as mutation of the phospholipid-binding site in Atg18 does not prevent vacuole fission and properly regulates Fab1p activity. Finally, the vacuole-specific type-V myosin adapter Vac17p interacts with Atg18p, perhaps mediating cytoskeletal attachment during retrograde transport. Atg18p is likely a PtdIns(3,5)P(2)"sensor," acting as an effector to remodel membranes as well as regulating its synthesis via feedback that might involve Vac7p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号