首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Ling KK  Siow NL  Choi RC  Tsim KW 《FEBS letters》2005,579(11):2469-2474
The role of adenosine 5'-triphosphate (ATP) and P2Y(1) nucleotide receptor in potentiating agrin-induced acetylcholine receptor (AChR) aggregation is being demonstrated in a co-culture system of NG108-15 cell, a mouse neuroblastoma X rat glioma hybrid cell line that resembles spinal motor neuron, with C2C12 myotube. In the co-cultures, antagonized P2Y(1) receptors showed a reduction in NG108-15 cell-induced AChR aggregation. Parallel to this observation, cultured NG108-15 cell secreted ATP into the conditioned medium in a time-dependent manner. Enhancement of ATP release from the cultured NG108-15 cells by overexpression of active mutants of small GTPases increased the aggregation of AChRs in co-culturing with C2C12 myotubes. In addition, ecto-nucleotidase was revealed in the co-culture, which rapidly degraded the applied ATP. These results support the notion that ATP has a role in directing the formation of post-synaptic apparatus in vertebrate neuromuscular junctions.  相似文献   

2.
3.
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.  相似文献   

4.
X Z Zhu  D M Chuang 《Life sciences》1987,41(9):1133-1139
Our previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha 2-adrenergic receptors. In the present study we investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of 3H-clonidine. A comparable increase in the number of binding sites was detected when 3H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha 2-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids.  相似文献   

5.
Differentiated neuroblastoma x glioma hybrid cells NG 108-15 express on their surface specific binding sites for tetanus toxin. 450 sites/cell with a KD of 2 x 10(-11) M were found under "physiological" conditions of pH and salt concentrations. A Hill coefficient of 1.1 indicated noncooperative binding. Specific binding of 125I-toxin to its sites could be prevented either by preincubation of the toxin with a neutralizing monoclonal antibody or by pretreatment of the cells with neuraminidase (Vibrio cholerae). To quantify the action of tetanus toxin on the stimulated release of 14C activity from differentiated cells preincubated with [14C]choline, a new type of perfusion device was designed which could be filled with cells growing in monolayers on Cytodex-3 microbeads. Tetanus toxin inhibited the stimulated 14C release in a time- and dose-dependent manner. A greater than 50% inhibition was found after 2 h of incubation with 10(-12) M toxin. The inhibitory action of tetanus toxin could be prevented with a monoclonal antibody to the toxin or with neuraminidase treatment of the cells. These results suggest that the neuraminidase-sensitive 2 x 10(-11) KD receptors are the productive receptors for tetanus intoxication in differentiated NG 108-15 cells. The possible chemical composition of these receptors is discussed. Differentiated NG 108-15 cells provide a useful model in which picomolar tetanus concentrations produce both measurable saturable binding and inhibition of potassium-evoked, acetylcholine release under physiological conditions of pH and salt concentrations.  相似文献   

6.
NG108-15 neuroblastoma x glioma hybrid cells and S49 lymphoma cells exhibit an enhancement in adenylyl cyclase activity after chronic treatment with receptor agonists that acutely inhibit the enzyme. Using agonists that activate five distinct inhibitory receptors in NG108-15 cells, we have found that there is a correlation between the extent of acute inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation and efficacy for induction of enhanced PGE1 stimulation of cAMP accumulation after chronic treatment and withdrawal. Chronic treatment with dideoxyadenosine, which acutely inhibits adenylyl cyclase activity by a mechanism independent or cell surface receptors or pertussis toxin-sensitive G proteins, did not induce enhanced PGE1 stimulation of cAMP accumulation in NG108-15 cells or forskolin stimulation of cAMP accumulation in S49 cells. While control basal cAMP concentrations were acutely decreased by carbachol in NG108-15 cells and by somatostatin in S49 cells, when the cAMP concentrations were maintained above the control basal values with a phosphodiesterase inhibitor, chronic treatment with these inhibitory drugs nonetheless resulted in enhanced cAMP responses in both NG108-15 and S49 cells. These results provide evidence that the initial decrement in cAMP concentrations caused by inhibitory drug is not the requisite signal for inducing the subsequent sensitization of adenylyl cyclase in NG108-15 and S49 cells but that activation of a pertussis toxin-sensitive G protein is involved in the development of this important adaptation.  相似文献   

7.
8.
1. Aminoalkylindoles, typified by WIN 55212-2, bind to G protein-coupled cannabinoid receptors in brain. Although cannabinoids inhibit adenylyl cyclase in NG108-15 neuroblastoma × glioma hybrid cells, cannabinoid receptor binding in these cells has not been described previously. This study compares pharamcological characteristics of [3H]WIN 55212-2 binding sites in rat cerebellar membranes and in NG108-15 membranes.2. Although the K D of specifid [3H]WIN 55212-2 binding was similar in brain and NG108-15 membranes, the B max was 10 times lower in NG108-15 than in cerebellar membranes. In both brain and NG108-15 membranes, aminoalkylindole analogues were relatively potent in displacing [3H]WIN 55212-2 binding.However, IC50 values for more traditional cannabinoids were significantly higher in NG108-15 membranes than in brain, e.g., the K i values for CP55,940 were1.2nM in brain and >5000nM in NG108-15 membranes. Moreover, sodium and GTP--S decreased [3H]WIN 55212-2 binding in brain but not in NG108-15membranes.3. These data suggest that WIN 55212-2 does not label traditional cannabinoid receptors in NG108-15 cells and that these novel aminoalkylindolebinding sites are not coupled to G proteins.  相似文献   

9.
Abstract: We have compared the characteristics of receptors for nucleotide analogues and the involvement of phospholipase C (PLC) in the effector mechanism in NG108-15 neuroblastoma and C6 glioma cells. The relative potency of these analogues to stimulate inositol phosphate (IP) formation is UTP > UDP ? 2-methylthio-ATP (2-MeSATP), GTP > ATP, CTP > ADP > UMP in NG108-15 cells and ATP > UTP > ADP > GTP > UDP ? 2Me-SATP, CTP, UMP in C6 glioma cells. α,β-Methylene-ATP, β,γ-methylene-ATP, AMP, and adenosine had little or no effect in both types of cells. The EC50 values were 3 and 106 µM for UTP in NG108-15 and C6 glioma cells, respectively. The EC50 value for ATP in C6 glioma cells was 43 µM. 2-MeSATP was threefold more potent than ATP in NG108-15 cells but had little effect in C6 glioma cells at 1 mM. In NCB-20 cells, a similar rank order of potency to that found in NG108-15 cells, i.e., UTP ? GTP > ATP > CTP, was observed. In both NG108-15 and C6 glioma cells, preincubation with ATP or UTP caused a pronounced cross-desensitization of subsequent nucleotide-stimulated IP production. ATP and UTP displayed no additivity in terms of IP formation at maximally effective concentrations. In contrast, endothelin-1, bradykinin, and NaF interacted in an additive manner with either nucleotide in stimulating PI hydrolysis. Pretreatment with pertussis toxin did not affect ATP-, UTP-, and GTP-stimulated IP generation in these cells, indicating that nucleotide receptors coupled to PLC by a pertussis toxin-resistant G protein in both cell types. Short-term treatment of the cells with protein kinase C (PKC) activators [phorbol 12-myristate 13-acetate (PMA) and octylindolactam V] produced a dose-dependent inhibition of ATP- and UTP-induced IP formation with a greater extent and higher susceptibility in C6 glioma cells than in NG108-15 cells. Furthermore, a 24-h exposure of the cells to PMA resulted in an obvious attenuation of nucleotide-induced IP formation in C6 glioma cells but failed to change the response in NG108-15 cells. These results suggest that distinct nucleotide receptors that respond to ATP and UTP with different selectivity exist in NG108-15 and C6 glioma cells. These heterogeneous nucleotide receptors coupled to PLC undergo discriminative modulation by PKC. NG108-15 and NCB-20 neuroblastoma are two cell lines that showed the highest specificity to extracellular UTP rather than ATP among the nucleotide receptors so far studied in various cells, suggesting the presence of a pyrimidine receptor in these cells.  相似文献   

10.
Desensitization of PGE1 receptors in neuroblastoma-glioma hybrid cells   总被引:1,自引:0,他引:1  
J G Kenimer 《Prostaglandins》1982,23(3):311-318
Prostaglandin E1 receptor sites were measured in homogenates of NG108-15 neuroblastoma-glioma hybrid cells after exposure of intact cells to PGE1. Scatchard analysis of competitive binding studies showed that incubation of NG108-15 cells in the presence of 2.5 microM PGE1 for 16 h resulted in a loss of PGE1 receptors and an increase in the dissociation constant of the remaining receptors. Thus, cells challenged with PGE1 not only lose adenylate cyclase activity, but also lose PGE1 receptors and decreased the affinity of the remaining receptors for PGE1.  相似文献   

11.
Acetylcholinesterase (AChE) in the clonal NG108-15 cell line has been previously characterized. This cell line represents an in vitro system to study AChE regulation and effects of chemical compounds that may alter AChE activity. Recently, glycyl-L-glutamine (GLG) was demonstrated to function as a neurotrophic factor for maintenance of AChE content in cat denervated superior cervical ganglion cells. In the present study, regeneration of AChE activity in cultures of undifferentiated NG108-15 cells after soman inhibition was investigated in the presence and absence of GLG. Cells were treated with soman (5.5 × 10–6 M) for 15 min and then washed to remove excess soman. Culture medium containing either GLG (10–6, 10–5, or 10–4M) or glycyl-L-glutamic acid (10–6 M) was added to cultures after soman treatment and remained in the medium until cell harvest. Cells were physically detached at various times after soman treatment and specific AChE activity was determined. After soman, AChE activity dramatically decreased to less than 1% of untreated cellular activity at 1 hr. AChE activity gradully increased after 5 hr, while untreated cell AChE activity was regained 20 hr after soman. The t1/2 for AChE regeneration was approximately 10 hr. GLG did not increase the rate of AChE regeneration after soman inhibition. These results indicate that GLG is not a directly acting neurotrophic factor for AChE synthesis in NG108-15 cells after chemical AChE inactivation.Abbreviations AChE acetylcholinesterase - NG108-15 cell neuroblastoma-glioma 108-15 cell - DMEM Dulbecco's modified Eagles minimal essential medium - FBS fetal bovine serum - GLGA glycyl-L-glutamic acid - L-GA L-glutamic acid - GLG glycyl-L-glutamine - GD soman The opinions or assertions contained herein are the private views of the authors and are not to be construed as reflecting the view of the Department of the Army or the Department of the Army or the Department of Defense.  相似文献   

12.
1. Using [3H]DHA and unlabeled L-alprenolol, a substantial amount of over 64% specific binding of beta-adrenergic receptor has been identified on the neuroblastoma x glioma hybrid NG108-15 cell, which has been proven to display numerous functional characteristics of intact neurons. 2. Beta-adrenergic receptor binding on intact NG108-15 cells does not change significantly upon morphological differentiation, induced by 1 mM dibutyryl cyclic AMP (dBcAMP). 3. The [3H]DHA binding on intact NG108-15 cells is rapid, saturable, and reversible, having a t1/2 of 1.0 min for association and 3.5 min for dissociation. 4. The affinity constant (Kd) and maximum binding capacity (Bmax) for binding of [3H]DHA to beta-adrenergic receptors on NG108-15 cells have been estimated by Scatchard plot analysis to be 2.5 and 0.23 nM, respectively. Further analysis indicates a single class of receptors for [3HDHA binding on NG108-15 cells. 5. Studies on kinetic properties have revealed on-rate (K + 1) and off-rate (K - 1) constants of 0.7 X 10(-9) M min-1 and 0.19 min-1, respectively. Further, the IC50 value and inhibition constant (Ki) for unlabeled L-alprenolol to inhibit [3HDHA binding on NG108-15 cells have been estimated to be 10(-5) and 8.9 X 10(-6) M, respectively. 6. The rank-order potency of catecholamine agonists, (-)ISO greater than (+)ISO greater than EPI greater than NE, reveals the presence of type 2 receptor for the beta-adrenergic binding on both differentiated and undifferentiated NG108-15 cells. 7. The present study indicates that the clonal neuroblastoma x glioma hybrid NG108-15 cell line possesses substantial amounts of beta-adrenergic receptors with characteristics similar to those on neuronal cells.  相似文献   

13.
Cross-linking of beta-125I-endorphin to NG108-15 cell membranes labeled bands with molecular masses of 55, 35, and 25 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We applied several criteria to evaluate the relevance of these cross-linked bands to delta-opioid receptors, including selectivity, stereospecificity, affinity, G-protein coupling, down-regulation, and correlation with opioid receptor level in different well-characterized cell lines. Only the 25 kDa protein adequately fulfilled all these criteria. Thus, cross-linking to the 25-kDa band was selectively inhibited by ligands with delta-opioid affinity, but not by mu-opioid, kappa-opioid, or optically inactive opioid ligands or by non-opioid ligands. Based on inhibition of cross-linking, we calculated an affinity of [D-Ala2,D-Leu5]enkephalin binding to the 25-kDa and (Kd = 6 nM) that is similar to that reported for [D-Ala2,D-Leu5]enkephalin binding to NG108-15 membranes; this affinity decreased approximately 10-fold in the presence of Na+/guanyl-5'-yl imidodiphosphate. Chronic agonist treatment of NG108-15 cells reduced cross-linking to the 25-kDa band, but not to others, in a manner parallel to down-regulation of opioid receptors. Finally, the amount of the 25-kDa band was roughly proportional to the level of opioid receptors present in N18TG2, NS20Y, ST7-3, and ST8-4 cells. The 25-kDa band was absent in PC12h, NIH3T3, and C6BU1 cells as well as in liver, all of which had no detectable opioid binding.  相似文献   

14.
The net content of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was measured in bradykinin (BK)-stimulated NIH3T3 fibroblasts and neuroblastoma-glioma hybrid cells (NG108-15). BK-mediated production of Ins(1,4,5)P3 was not affected by replacing the medium with Ca2+-free medium, but addition of EGTA (1mM) to Ca2+-free medium markedly prevented production of Ins(1,4,5)P3. Although pertussis toxin (PT) treatment caused ADP-ribosylation in both NIH3T3 cells and NG108-15 cells, the BK-induced Ins(1,4,5)P3 formation was considerably reduced in the former cells but not in the latter cells, suggesting that PT-sensitive and PT-insensitive GTP-binding proteins are involved in phosphoinositide phospholipase C (PI-PLC) activation in fibroblasts and neuroblastoma cells, respectively. In NG108-15 cells down-regulated in protein kinase C (PKC) by long-term exposure to phorbol 12-myristate 13-acetate (PMA), BK-stimulated Ins(1,4,5)P3 accumulation was significantly enhanced compared to control cells.  相似文献   

15.
Enkephalin molecules were bound to poly(Lys) (poly-K) or poly(Ala-Lys-Ala-Leu) (poly-A) and their interactions with NG108-15 cells, platelets, erythrocytes and fibroblast cells were investigated. A fluorescent probe, rhodamine, also was bound to the conjugates for monitoring interactions with these cells. Observations by fluorescence microscopy revealed that NG108-15 cells, platelets, and fibroblast cells were labelled by the conjugates, whereas erythrocytes were not. Since polypeptides without enkephalin moieties were only weakly adsorbed on the cells, it was concluded that the enkephalin/polypeptide conjugates were bound specifically to receptors on the cell membrane. Interestingly, when the enkephalin/poly-K conjugate was bound to NG108-15 and fibroblast cells, fluorescent patches appeared on the membrane. Such patch formation was not clearly observed with an enkephalin/rhodamine or enkephalin/poly-A conjugate. In the case of fibroblast cells, the fluorescence converged to a large cluster, which was ultimately internalized. The results suggest that clustering of the receptors in cell membranes is influenced by the carrier polymer presumably due to cross-linking of the receptors and/or the effect of the cationic polypeptides.  相似文献   

16.
The ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA) has been identified to exist in neuroblastoma x glioma hybrid 108-15 cells (NG108-15 cells). More importantly, when NG cells were induced to differentiate with N6, O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (dibutyryl cAMP), the cellular activity of kinase FA was found to increase dramatically. Time course study further revealed that induction of differentiation in NG cells by dibutyryl cAMP treatment increased the FA activity to over 3 times the levels found in undifferentiated cells and in a linear day-dependent manner, indicating that the FA activity level is correlated with the state of differentiation of NG108-15 cells. This is the first report providing initial evidence that protein kinase FA (a transmembrane signal of insulin) is involved in the induction of neuronal cell differentiation.  相似文献   

17.
We previously showed that dopamine receptors D1R and D2R expressed in NG108-15 cells activated protein kinase A and extracellular signal-regulated kinase (ERK) respectively, resulting in differential activation of nuclear factor (NF)-kappaB activity. To investigate whether other dopamine receptor subtypes regulate NF-kappaB, we established NG108-15 cells stably expressing D3R, D4R and D5R (NGD3R, NGD4R and NGD5R). D5R stimulation with SKF 38393 decreased NF-kappaB luciferase reporter activity in NGD5R cells, similar to D1R stimulation in NGD1R cells. However, D3R or D4R stimulation with quinpirole showed no change in NF-kappaB-Luci activity, although forskolin-induced cyclic AMP responsive element-Luci activation was attenuated by quinpirole treatment in NGD2LR, NGD3R and NGD4R cells. As expected, activation of ERK or serum responsive element-luciferase reporter not observed following stimulation with quinpirole in D3R- or D4R-expressing cells. We further examined the effects of haloperidol and risperidone, which are typical and atypical antipsychotic drugs respectively, on NF-kappaB activity by gel shift assay in mouse frontal cortex. Haloperidol treatment slightly attenuated basal NF-kappaB activity. By contrast, risperidone treatment enhanced NF-kappaB activity. Taken together, D2R and D1R/D5R had opposite effects on NF-kappaB activity in NG108-15 cells. Risperidone up-regulated and haloperidol down-regulated NF-kappaB activity in mouse brain. This effect may be related to the atypical antipsychotic properties of risperidone.  相似文献   

18.
19.
R I Cone  S Rosenfeld  J Lameh  W Sadée 《Life sciences》1992,51(22):PL219-PL224
The mouse neuroblastoma x rat glioma hybrid NG108-15 was previously shown to express delta opioid receptors. Because neuroblastoma cells display different phenotypes and cloned cell lines are heterogenous, we studied the characteristics and distribution of human 125I-beta-endorphin (125I-beta E) binding sites in cultures of NG108-15 cells with the use of micro-autoradiography and light microscopy. 125I-beta E labeled delta sites in NG108-15 in the presence of the non-opioid blocking peptide, beta-endorphin (6-31) (beta E (6-31)). Silver grains resulting from 125I-beta E binding to the opioid sites occurred in diffuse patches over several cells, with preferential location in dense cell patches. Pretreatment of NG108-15 with the delta agonist DADLE, previously shown to decrease beta E binding to delta sites on intact cells, also reduced silver grain density; however, some cells located in dense cell clusters were resistant to substantial agonist induced loss of labeling. These results suggest that delta opioid binding has a heterogenous cellular distribution in NG108.  相似文献   

20.
The characteristics of KCl-stimulated45Ca uptake by neuroblastoma x glioma hybrid NG108-15 cells induced to differentiate with dibutyryl cAMP (Bt2cAMP) and of PC12h pheochromocytoma cells induced to differentiate with nerve growth factor (NGF) were studied. The extent and rate of KCl-stimulated45Ca uptake by differentiated NG108-15 cells induced with Bt2cAMP were significantly higher than those of the undifferentiated cells. However, differentiation of PC12h cells induced with NGF did not enhance their extent or rate of KCl-stimulated45Ca uptake. The effects of Ca agonist and antagonists indicated that the characteristics of KCl-stimulated45Ca uptake by Bt2cAMP-treated NG108-15 cells and NGF-treated PC12h cells mainly reflected those of peripheral L-type voltage-sensitive calcium channels activated by high KCl. These results suggest that differentiated neural cells did not all show an enhanced capacity for KCl-stimulated45Ca uptake, although the characteristic patterns of differentiation (extension of neurite-like processes, etc.) and that of effect by Ca agonist or antagonists on NG108-15 cells and PC12h cells were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号