首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onset of cell proliferation is associated with enhanced turnover of the polyamines putrescine, spermidine, and spermine, particularly evident in the massive increase in the activity of the rate-limiting enzyme in their production, ornithine decarboxylase (ODC). The physiological functions of these polyamines, however, have remained unclear. Here we report that treatment of LSTRA cells for 2-18 h with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, decreased the amount of phosphotyrosine in several cellular substrates including the T cell protein tyrosine kinase p56lck. No reductions in the amount of p56lck, overall synthesis of protein and DNA, or cell viability were observed until much later. DFMO did not affect the catalytic activity of p56lck in vitro and the activity of p56lck immunoprecipitated from DFMO-treated cells was unaltered. Addition of putrescine, the reaction product of ODC, completely reversed the effect of DFMO on tyrosine phosphorylation. Finally, we provide evidence that polyamines reduce the activity of cellular protein tyrosine phosphatases toward endogenous substrates. Our results suggest that polyamines may influence the extent of tyrosine phosphorylation during cell proliferation and malignant transformation, perhaps by modulating the rate of dephosphorylation of specific target proteins.  相似文献   

2.
Malachite Green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumour promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the mitogen activated protein (MAP) kinase signal transduction pathway in preneoplastic cells induced by MG. Western blots of MG induced preneoplastic cells showed no phosphorylation of ERK1, an increased phosphoactive ERK2 associated with a decreased expression of phosphoactive JNK2. However, total forms of ERKs, JNKs and p38 Kinases showed similar levels of expression in control and preneoplastic SHE cells. Indirect immunofluorescence studies have shown a distinct nuclear localisation of phosphoactive ERKs in MG induced preneoplastic cells. Flow cytometric analysis showed an increase of S-phase cells in preneoplastic cells compared to control SHE cells. The present study indicates that hyperphosphorylation of ERK2, decreased JNK2 phosphorylation and an increase in S-phase cells seems to be the early changes associated with the MG induced malignant transformation of SHE cells in primary culture.  相似文献   

3.
The reversible phosphorylation of structural and regulatory proteins in eucaryotic cells is one of the most important regulatory mechanisms. Protein tyrosine phosphatases (PTP) regulate a wide range of signal transduction pathways that control many cellular processes such as cell proliferation, differentiation and growth. Disorder in PTP gene expression is implicated in the development of cancer, autoimmune and neurodegenerative diseases. The active sites of these enzymes are characterized by the consensus sequence containing cysteine which is essential for enzyme activity and highly susceptible to oxidation. Reversible oxidation of the catalytic cysteine is becoming recognized as a general mechanism for regulation of PTP enzymatic activity. These findings suggest that protein tyrosine phosphatases may be considered as very sensitive markers of oxidative stress. Many studies have demonstrated that the production of reactive oxygen species during oxidative stress can inactivate protein tyrosine phosphatases.  相似文献   

4.
Tyrosine protein kinases have been shown to be functionally involved in regulation of cellular signalling, proliferation and transformation. The activity of tyrosine protein kinases is counterbalanced by phospho tyrosine phosphatases that maintain constitutively low levels of protein phosphotyrosine in most cells. In this study the effect of N-ethylmaleimide on the protein tyrosine phosphorylation was tested in Jurkat T-cells. Treatment of intact cells for 5-10 mins with 50-100 microM N-ethylmaleimide resulted in a dramatic increase in phosphorylation on tyrosine residues. Phosphoaminoacid analysis revealed an up to ten-fold increase in the content of phosphotyrosine. N-ethylmaleimide blocked the phospho tyrosine phosphatases activity of immunoprecipitated CD45 while in a kinase assay N-ethylmaleimide did not affect the 32P-gamma-ATP phosphorylation of substrates. The N-ethylmaleimide-induced hyperphosphorylation was reversed by treatment with 2 mM dithiotreitol. It is concluded that N-ethylmaleimide offers a novel useful tool for identification of substrates for tyrosine protein kinases and for studies on phosphotyrosine-dependent protein interactions.  相似文献   

5.
Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.  相似文献   

6.
The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.  相似文献   

7.
Ligation of the CD95 receptor resulted in a transient increase of cellular tyrosine phosphorylation. The inhibition of protein tyrosine phosphatases by pervanadate, a potent activator of B cells and T cells through the induction of tyrosine phosphorylation and downstream signaling events in the activation cascade, antagonized CD95-triggered apoptosis. Pervanadate exerted its inhibitory effect only during the early phase of apoptosis prior to the CD95-induced decrease of the mitochondrial transmembrane potential. Inhibition of tyrosine phosphatases delayed the cleavage and activation of caspase-8 and caspase-3 and antagonized the tyrosine dephosphorylation of the CD95 receptor-associated phosphoproteins p61 and p89/92. In contrast, ligation of the tumor necrosis factor (TNF) receptor resulted in a continuous tyrosine dephosphorylation of cellular proteins. Pervanadate-induced tyrosine phosphorylation increased the TNF-alpha-induced cytotoxicity and NF-kappaB activation, suggesting that it stimulates early signaling events prior to the separation of the two signaling pathways.  相似文献   

8.
The role of tyrosine phosphorylation in cell transformation has been well established. It has been proposed that protein tyrosine phosphatases (PTPases) may be capable of dephosphorylating critical substrates involved in the transformation process, suggesting that they represent a tumor suppressor family of enzymes. Indeed, recent work showed that overexpression of some PTPases in malignant cells counteracted the action of oncogenic tyrosine kinases although overexpression of other forms of these enzymes increased tumorigenicity. The work described herein has provided some insight into the action, both antagonistic and synergistic, of the kinases and phosphatases on cell growth and transformation.  相似文献   

9.
Protein tyrosine phosphorylation in streptomycetes   总被引:1,自引:0,他引:1  
Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.  相似文献   

10.
Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation  相似文献   

11.
The cellular homologs of the v-Crk oncogene product are composed exclusively of Src homology region 2 (SH2) and SH3 domains. v-Crk overexpression in fibroblasts causes cell transformation and elevated tyrosine phosphorylation of specific cellular proteins. Among these proteins is a 130-kDa protein, identified as p130cas, that forms a stable complex in vivo with v-Crk. We have explored the role of endogenous Crk proteins in Bcr-Abl-transformed cells. In the K562 human chronic myelogenous leukemia cell line, p130cas is not tyrosine phosphorylated or bound to Crk. Instead, Crk proteins predominantly associate with the tyrosine-phosphorylated proto-oncogene product of Cbl. In vitro analysis showed that this interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. In NIH 3T3 cells transformed by Bcr-Abl, c-Cbl becomes strongly tyrosine phosphorylated and associates with c-Crk. The complex between c-Crk and c-Cbl is also seen upon T-cell receptor cross-linking or with the transforming, tyrosine-phosphorylated c-Cbl. These results indicate that Crk binds to c-Cbl in a tyrosine phosphorylation-dependent manner, suggesting a physiological role for the Crk-c-Cbl complex in Bcr-Abl tyrosine phosphorylation-mediated transformation.  相似文献   

12.
Protein tyrosine kinase activity was assayed in a variety of chicken tissues during embryonic development and in the adult. In some tissues protein tyrosine kinase activity decreased during embryonic development; however, in other tissues it remained high throughout development, it contrast to the level of protein tyrosine phosphorylation, which decreased during development. The highest levels of tyrosine kinase activity were detected in 17-d embryonic brain although only low levels of protein tyrosine phosphorylation were observed in this tissue. Several alternatives were examined in an effort to determine the mechanism responsible for the low levels of tyrosine phosphorylated proteins in most older embryonic and adult chicken tissues despite the presence of highly active tyrosine kinases. The results show that the regulation of protein tyrosine phosphorylation during embryonic development is complex and varies from tissue to tissue. Furthermore, the results suggest that protein tyrosine phosphatases play an important role in regulating the level of phosphotyrosine in proteins of many older embryonic and adult tissues.  相似文献   

13.
We have studied tyrosine phosphorylation in particulate fractions from 11 leukaemic cell lines by using as substrate either a synthetic tyrosine containing peptide or the endogenous proteins. The results were compared with those obtained using similar fractions from normal lymphocytes and bone marrow cells. Particulate fractions from all the leukaemic cell lines and normal bone marrow cells exhibited lower levels of tyrosine protein kinase activity compared to normal lymphocytes. When the phosphorylation of endogenous substrates was assayed, proteins were phosphorylated on tyrosine residues (rather than serine or threonine residues) to a larger extent in normal lymphocytes than in leukaemic cell lines. Separation of labelled endogenous substrates on sodium dodecyl sulfate-polyacrylamide gels showed a number of phosphorylated alkali-resistant bands in the range 14-175kd in the lymphoid cell lines; normal lymphocytes exhibited a smaller number of strongly phosphorylated bands. Normal lymphocytes from different individuals showed reproducible patterns of phosphorylated substrates. Normal bone marrow cells and myeloid leukaemia lines showed weak, if any, phosphorylation. Among the leukaemic cell lines no particular pattern of phosphorylated substrates common to cells of similar phenotype could be detected. We suggest that the level of overall tyrosine protein kinase activity in these fractions reflects their position in the cell cycle rather than their normal or malignant status.  相似文献   

14.
Fibroblasts transformed by Abelson murine leukemia virus differ from normal fibroblasts in that they contain several cellular proteins, including one of 29 and one of 36 kilodaltons, which are phosphorylated at tyrosine residues. Since it has been shown before that these proteins also become phosphorylated at tyrosine after transformation of fibroblasts by a number of other retroviruses, their phosphorylation may play an important role in the transformation of these cells. In contrast, the 36-kilodalton phosphoprotein was not detectable in three of the four lines of Abelson virus-transformed B lymphoma cell lines studied here. These three cell lines, RAW307.1.1, 18-48, and 18-81, and a B lymphoma induced by mineral oil, WEHI 279, were all found to lack both the phosphorylated and unphosphorylated forms of the 36-kilodalton protein. It thus appears that expression of this major cell protein is not essential for the survival of B lymphoma cells in culture and that the phosphorylation of the 36-kilodalton protein at tyrosine is not essential for transformation of pre-B lymphocytes by Abelson virus.  相似文献   

15.
Malachite green (MG) induces DNA damage and malignant transformation of Syrian hamster embryo (SHE) cells in primary culture. In the present study, we have studied the role of all the three isoforms of mitogen activated protein (MAP) kinases i.e. ERK (extracellular regulated kinase), JNK (JUN- N- terminal kinase) and p38 kinase during transformation of SHE cells by MG. The results showed that transformed cells were associated with a decreased expression of phosphoactive ERK and JNK and increased expression of p38 kinase as evident from the Western blot, immunofluorescence and flow cytometry studies. Also, a persistent nuclear localization of p38 kinase was observed in the transformed cells. The present study indicated that p38 kinase was present at higher levels and seemed to be associated with transformation, which suggested that inhibitors of p38 kinase could serve in general as potential agents for selective cancer therapy.  相似文献   

16.
Helicobacter pylori type I strains harbour the cag pathogenicity island (cag-PAI), a 37 kb sequence,which encodes the components of a type IV secretion system. CagA, the first identified effector protein of the cag-PAI, is translocated into eukaryotic cells and tyrosine phosphorylated (CagAP-tyr) by a host cell tyrosine kinase. Translocation of CagA induces the dephosphorylation of a set of phosphorylated host cell proteins of unknown identity. CagA proteins of independent H. pylori strains vary in sequence and thus in the number and composition of putative tyrosine phosphorylation motifs (TPMs). The CagA protein of H. pylori strain J99 (CagAJ99) does not carry any of three putative tyrosine phosphorylation motifs (TPM-A, TPM-B or TPM-C) predicted by the MOTIF algorithm in CagA proteins. CagA,n is not tyrosine phosphorylated and is inactive in the dephosphorylation of host cell proteins. By site-specific mutagenesis,we introduced a TPM-C into CagA,. by replacing a single lysine with a tyrosine. This slight modification resulted in tyrosine phosphorylation of CagAJ99 and host cell protein dephosphorylation. In contrast, the removal of the indigenous TPM-C from CagAP12 did not abolish its tyrosine phosphorylation, suggesting that further phosphorylated sites are present in CagAP12. By generation of hybrid CagA proteins, a phosphorylation of the most N-terminal TPM-A could be excluded. Our data suggest that tyrosine phosphorylation at TPM-C is sufficient, but not exclusive,to activate translocated CagA. Activated CagAPtr might either convert into a phosphatase itself or activate a cellular phosphatase to dephosphorylate cellular phosphoproteins and modulate cellular signalling cascades of the host.  相似文献   

17.
Reversible protein phosphorylation plays a central role in cellular signal transduction and is a focus of biomedical studies. However, it is a challenging task to study the effects of protein phosphorylation in the presence of protein phosphatase activities, especially for protein tyrosine phosphatases SHP1, SHP2 and LMW-PTP, which are themselves regulated by protein tyrosine phosphorylation. Expressed protein ligation, by combining chemical peptide synthesis with recombinant protein expression, allows for site-specific unnatural modifications of semisynthetic proteins. In this review, we describe how semisynthetic proteins were prepared to incorporate nonhydrolyzable phosphotyrosine analogs, and utilized in combination with site-directed mutagenesis and other means to elucidate regulatory mechanisms of protein tyrosine phosphatases.  相似文献   

18.
Cells transformed with the middle tumor antigen (mT) of polyomavirus were treated with sodium orthovanadate (Na3VO4), an inhibitor of phosphotyrosine phosphatases, to enhance for the detection of cellular proteins which are phosphorylated on tyrosine. Na3VO4 treatment of mT-transformed rat F1-11 cells resulted in a 16-fold elevation in the level of phosphotyrosine associated with total cellular proteins. Parental F1-11 cells displayed only a twofold increase in phosphotyrosine following Na3VO4 treatment. The abundance of phosphotyrosine in Na3VO4-treated mT-transformed F1-11 cells was twofold higher than in untreated Rous sarcoma virus (RSV)-transformed F1-11 cells and 3.5-fold lower than in Na3VO4-treated RSV-transformed F1-11 cells. Tyrosine phosphorylation of many cellular proteins, including p36, the major substrate of the RSV pp60v-src protein, was detected in Na3VO4-treated mT-transformed F1-11 cells at levels comparable to those observed in RSV-transformed cells. Some of the major protein species recognized by antiphosphotyrosine antibodies in Na3VO4-treated mT-transformed cells displayed electrophoretic mobilities similar to those detected in RSV-transformed F1-11 cells. Tyrosine phosphorylation of p36 was also detected in fibroblasts infected with polyomavirus. There was no detectable difference in the kinase activity of pp60c-src:mT extracted from untreated and Na3VO4-treated mT-transformed cells; however, Na3VO4 treatment of F1-11 and mT-transformed F1-11 cells was shown to inhibit the activity of phosphotyrosine phosphatases in a crude assay of total cellular activity with pp60v-src as the substrate. Thus, Na3VO4 treatment may allow the detection of phosphotyrosine-containing proteins in mT-transformed cells by preventing the turnover of phosphate on substrates phosphorylated by activated cellular protein-tyrosine kinases associated with mT. These results suggest that tyrosine phosphorylation of cellular proteins may be involved in the events that are responsible for mT-induced cellular transformation.  相似文献   

19.
Very little protein tyrosine phosphorylation was observed in growing (exponential-phase) Entamoeba histolytica cells by immunoblotting and quantitative immunofluorescence. After 1 h of serum deprivation, two proteins (42 and 38 kDa in SDS-PAGE) were tyrosine phosphorylated and two more proteins (96 and 63 kDa) also showed tyrosine phosphorylation when examined after 4 h of serum deprivation. Intense enhancements of anti-phosphotyrosine immunofluorescence levels were observed during this period of serum withdrawal. Membrane-associated tyrosine kinase activity reached a peak (3.5-fold increase) 1 h after serum deprivation and decreased thereafter reaching a basal level by 2 h of serum deprivation. Interestingly, tyrosine kinase activities remained unaffected by serum stimulation (2-60 min) of serum-deprived cells. Also, during this period of serum stimulation tyrosine phosphorylated proteins of serum-deprived cells were dephosphorylated. Tyrosine phosphatase activities were suppressed during serum deprivation and on serum addition to serum-deprived cells tyrosine phosphatase activities increased significantly. Our data attest that protein tyrosine phosphorylation was associated with growth inhibition of E. histolytica and serum stimulation of E. histolytica produced tyrosine phosphatase activation and protein tyrosine dephosphorylation.  相似文献   

20.
Growth hormone (GH) influences a number of tissue-specific biological activities in diverse cell types. However, little is known about the biochemical pathway by which the signal initiated by GH binding to its cell-surface receptor is transduced. The GH receptor has been reported to be phosphorylated on tyrosine in 3T3-F442A cells, a cell line in which GH promotes differentiation and inhibits mitogen-stimulated growth; however, it is not known whether tyrosine phosphorylation plays a role in GH signal transduction. We report that GH treatment of 3T3-F442A cells resulted in the rapid tyrosine phosphorylation of at least four proteins. These included 42- (pp42) and 45-kDa (pp45) proteins immunologically related to ERK1 (extracellular signal-regulated kinase 1), a member of a family of serine/threonine protein kinases that are phosphorylated on tyrosine in response to mitogens. Prolonged phorbol ester pretreatment attenuated the tyrosine phosphorylation of pp42 and pp45 in platelet-derived growth factor-treated cells, but not in GH-treated cells. Maximal GH-stimulated tyrosine phosphorylation of pp42 and pp45 coincided with peak levels of a 42-kDa renaturable MBP kinase activity in lysates of GH-treated cells resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The observation that multiple cellular proteins are rapidly phosphorylated on tyrosine in response to physiological concentrations of GH suggests that tyrosine phosphorylation plays a role in GH signal transduction. Moreover, the stimulation of tyrosine phosphorylation of ERK-related proteins by GH suggests that mitogens and nonmitogens may employ common phosphotyrosyl proteins in the activation of ultimately distinct cellular programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号