首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been developed for the sensitive and accurate determination of enantiomeric compositions of a variety of drugs, including propranolol, naproxen, and warfarin. The method is based on the use of the fluorescence technique to measure diastereomeric interactions between both enantiomeric forms of a drug with an optically active room temperature ionic liquid (RTIL) followed by partial least squares analysis of the data. The chiral RTIL used in this study, S-[(3-chloro-2-hydroxypropyl) trimethylammonium] [bis((trifluoromethyl)sulfonyl)amide] (S-[CHTA](+) [Tf(2)N](-)), is a novel chiral RTIL that has been synthesized successfully recently in our laboratory in optically pure form using a simple one-step reaction with commercially available reagents. The high solubility power and strong enantiomeric recognition ability make it possible to use this chiral RTIL to solubilize a drug and to induce diastereomeric interactions for the determination of enantiomeric purity, that is, to use it as both solvent and chiral selector. Enantiomeric compositions of a variety of pharmaceutical products with different shapes, sizes, and functional groups can be determined sensitively (microgram concentration) and accurately (enantiomeric excess as low as 0.30% and enantiomeric impurity as low as 0.08%) by use of this method.  相似文献   

2.
Several biologically active compounds structurally include the enantiopure 2‐substituted‐1,4‐benzodioxane scaffold. The straightforward racemization that affects reactions involving most of the common chemical reactives is thus a crucial issue. The developing of a completely stereo‐controlled synthetic route that does not affect the enantiomeric excess is consequently mandatory. It is also important to set up a reliable chiral HPLC method, able to follow the reaction, and to improve the synthetic performances. Here, we report the chiral investigation of two different synthons, we specifically evaluated the synthetic pathways that could be run in order to afford them, avoiding the racemization processes, which could normally occur in basic conditions. In addition, we developed peculiar chiral HPLC methods in order to resolve the enantiomers, define the enantiomeric excess, and fully characterize these compounds.  相似文献   

3.
D K Lloyd  D M Goodall 《Chirality》1989,1(4):251-264
Chiroptical detection for HPLC is particularly useful as a selective detection method for chiral molecules, and in enantiomeric purity determination with partial chiral separation or without chiral separation. The recent development of laser-based polarimeters with microdegree sensitivity has increased the applicability of optical rotation detection in HPLC. The detection limit of these instruments is submicrogram on-column for many chiral compounds in analytical HPLC. A variety of applications of the selective detection of optically active molecules are reviewed. The use of polarimetric detection with partial chiral separation is considered, both as an aid to method development and for enantiomeric purity determination. Finally applications to enantiomeric purity determination without chiral separation are reviewed, with the dual use of nonchirally selective and chiroptical detectors to determine the total amount and optical purity of the analyte. Determinations of chiral purity for samples of high enantiomeric excess are described, which with laser-based instrumentation may give accuracies of better than +/- 1% with sample loadings of 50 micrograms on an achiral column. Applications to the study of enantioselective reactions are also considered, with determination of enantiomeric excess in near-racemates to better than +/- 0.1%.  相似文献   

4.
In our earlier work we established that stirred crystallization of achiral compounds that crystallize in enantiomeric forms result in spontaneous chiral symmetry breaking. The asymmetry thus spontaneously generated is confined to the solid state. In this article, we present a case in which the crystal enantiomeric excess (CEE) can be converted to molecular enantiomeric excess (EE) through a solid state reaction which relates the enantiomeric form of the crystal to the enantiomeric form of the product. Such a process not only provides a means of detecting the CEE generated in stirred crystallization but it is also a means through which chiral asymmetry generated spontaneously is "propagated" to generate chiral compounds with enantiomeric excess.  相似文献   

5.
Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids.  相似文献   

6.
When kinetic resolution is applied for the production of enantiomerically pure compounds, process options may be used which involve more than one chiral substrate and one chiral product, such as sequential or parallel enzymatic kinetic resolutions or hydrolysis of diastereomers. Although the relation between the yields (y) of the chiral compounds is straightforward in these cases, the relation between their enantiomeric excess (ee) values is not. Combining mass balances into a so-called chiral balance (Sigma y . ee(R) = 0) provides the relation between enantiomeric excess values in a useful manner. This chiral balance easily shows which nonmeasured enantiomeric excess values and yields can be calculated from measured values. The chiral balance is only valid when configurations at chiral centers are conserved. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
By using a combination of inverse gated 1H decoupled 13C‐NMR experiments 1 with short acquisition times and NMR Cryo‐probe technology, the sample requirements and experimental times necessary to accurately measure enantiomeric excess of small chiral molecules has been reduced 16‐fold. Quality 13C‐NMR spectra can now be obtained from a 1 to 5 mg sample in 12 minutes. The enantiomeric excess determination achieved from the average integration of all the 13C‐resonances in the spectrum is comparable to enantiomeric excess measured by chiral SFC. The advantage of the NMR method is that enantiomeric excess can rapidly be measured in situ on practical amounts of enantioselective reaction products without the need for chromatographic separation or chemical modification and with substantially less solvent waste. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Lin Z  Wu M  Wolfbeis OS 《Chirality》2005,17(8):464-469
Chiral discrimination of malates in aqueous solutions at near-neutral pH is achieved through fluorescence measurement and imaging using the europium-tetracycline complex (EuTc) as a fluorescent probe. The method is based on the significantly different fluorescence properties of the ternary complexes (Eu-Tc-malate) formed between EuTc and the enantiomeric malates. The enantiomeric excess (ee) of chiral malates can be quantified by both steady-state and time-resolved fluorescence, using either a conventional fluorescence microplate reader or fluorescence imaging. It offers a facile and sensitive method for high-throughput chiral discrimination.  相似文献   

9.
Zhao Y  Yang XB  Wang QF  Nan PJ  Jin Y  Zhang SY 《Chirality》2007,19(5):380-385
A new capillary zone electrophoresis (CZE) method was developed to separate three chiral 2,3-dihydroxy-3-phenylpropionate enantiomers using neutral hydroxypropyl-beta-CD (HP-beta-CD) as chiral selector and borate as background electrolyte. The results showed that HP-beta-CD exhibited good enantioselectivity and high resolution was achieved under the optimum condition of pH 10.3, 200 mM borate buffer containing 6% methanol and 50 mM HP-beta-CD at 15 kV and 20 degrees C within 16 min. The precision of the method was <0.9% for migration time and 4.5% for corrected peak area. In addition, the developed method was successfully applied to the determination of enantiomeric excess (ee) of synthetic 2,3-dihydroxy-3-phenylpropionate samples. With this method, low as 0.2% impurity of the undesirable enantiomer in the presence of high amount of target enantiomer was determined. The results demonstrated that the proposed CZE method is a simple and useful technique and is applicable to ee assay of 2,3-dihydroxy-3-phenylpropionate enantiomers.  相似文献   

10.
We previously identified and characterized 1 novel deep‐sea microbial esterase PHE21 and used PHE21 as a green biocatalyst to generate chiral ethyl (S)‐3‐hydroxybutyrate, 1 key chiral chemical, with high enantiomeric excess and yield through kinetic resolution. Herein, we further explored the potential of esterase PHE21 in the enantioselective preparation of secondary butanol, which was hard to be resolved by lipases/esterases. Despite the fact that chiral secondary butanols and their ester derivatives were hard to prepare, esterase PHE21 was used as a green biocatalyst in the generation of (S)‐sec‐butyl acetate through hydrolytic reactions and the enantiomeric excess, and the conversion of (S)‐sec‐butyl acetate reached 98% and 52%, respectively, after process optimization. Esterase PHE21 was also used to generate (R)‐sec‐butyl acetate through asymmetric transesterification reactions, and the enantiomeric excess and conversion of (R)‐sec‐butyl acetate reached 64% and 43%, respectively, after process optimization. Deep‐sea microbial esterase PHE21 was characterized to be a useful biocatalyst in the kinetic resolution of secondary butanol and other valuable chiral secondary alcohols.  相似文献   

11.
We have reported that the random chiral asymmetry generation, which is a spontaneous preferential generation of one enantiomer, was observed in the synthesis of a chiral octahedral cobalt complex, cis-[CoBr(NH(3))(en)(2)]Br(2). In this article, we review our studies to explain in this system the autocatalytic growth of small enantiomeric excess that arises due to statistical fluctuations. One important experimental finding was that the rate of chiral autocatalysis increased with increasing the degree of supersaturation. Furthermore, our numerical simulation indicates that even small inhomogeneities in the reaction system may play a significant role because their effect is amplified by the autocatalytic reaction under appropriate conditions. In a small volume, fluctuations in concentration can grow if the autocatalytic growth overcomes the diffusional loss of the excess concentration from this volume. This may makes the enantiomeric excess of the chiral complex randomly fluctuate from run to run.  相似文献   

12.
B Kosjek  G Uray 《Chirality》2001,13(10):657-667
Several brush-type chiral stationary phases (CSPs) based on undecanoyl- or butanoyl-bound (R,R)-1,2-diphenylethane-1,2-diamine (DPEDA) as chiral selector were prepared by an innovative, fast, and less expensive kind of preparation. The key to this method is the immobilization of the enantiomeric pure diamine with only one amino function in a simple substitution reaction on hydroxysuccinimide ester-activated silica. No excess chiral material is lost. Loading can be easily monitored analyzing the filtrate. The free second amino function can subsequently be acylated with different acyl halogenides. Examples with benzoyl- and 3,5-dinitrobenzoyl (DNB) amides show that, based on our new approach, a library of differently acylated Pirkle-type CSPs can easily be obtained. A benzoylated analog of the commercially available ULMO CSP is shown to be very effective in separating enantiomers of N-acyl amino acids.  相似文献   

13.
The enantioselectivity of the in vitro conversion of simple prochiral and chiral aliphatic alkenes into oxiranes by liver microsomes of untreated or induced (phenobarbital) rats, of untreated or induced (phenobarbital, benzo[a] pyrene) mice, and of humans was determined by complexation gas chromatography. The enantiomeric excess (ee) of the epoxides extends from 0 (trimethyloxirane) to 50% (ethyloxirane). The configuration (R or S) of the enantiomers formed in excess is consistent for homologous oxiranes but is species dependent and in some cases influenced by enzyme induction. Enantioselectivity differences of aliphatic alkene epoxidation by human liver microsomes of four individuals are negligible.  相似文献   

14.
Currently available methods for the detection of enantiomeric impurities generally require expensive and sophisticated instrumentation. Here, we describe a simple and inexpensive membrane-based chiral immunosensor that allows quantitative determination of chiral analytes up to an enantiomer excess of 99.9%. The experimental setup is based on a competitive reaction between the analyte and a biotin-derivatized analog for the binding sites of a stereoselective antibody, which is immobilized onto a membrane. The antibody-bound analog is detected with peroxidase-conjugated avidin that converts a colorless substrate into an insoluble dye on the membrane surface. The color intensity, which is inversely related to the concentration of analyte in a sample, can be evaluated with standard image analysis programs.  相似文献   

15.
Kiss V  Egri G  Bálint J  Fogassy E 《Chirality》2006,18(2):116-120
A general method was found for the resolution of the racemic 1-phenyl-1-propanol (1) and 1-phenyl-2-propanol (2) with various resolving agents. Monoesters of the alcohols were prepared, which were then reacted with different chiral bases. Successful optical resolutions were achieved only with the maleic acid monoesters (3 and 6). Alcohol 1 has been resolved to >99% enantiomeric excess by diastereoisomeric salt formation via its maleic acid monoester (3) using cinchonidine (9) as resolving agent. Alcohol 2 has been obtained in 98% enantiomeric excess by diastereoisomeric salt formation via its the maleic acid monoester (6) using (+)-dehydroabietylamine (11) as resolving agent.  相似文献   

16.
Zhou L  Lin Z  Welch CJ  Ge Z  Ellison D 《Chirality》2006,18(5):306-313
A novel approach for the potential on-line determination of the enantiomeric excess (ee) of an M3 antagonist drug substance combining attenuated total reflectance infrared (ATR-IR) spectroscopy, guest-host complexes, and chemometric data analysis is described. Chiral recognition through a formation of diastereomeric complexes was measured by ATR-IR. Small changes on the IR spectra reflect the interaction between the guest (M3) and host (chiral selector). These changes are measured as a function of M3 enantiomer excess. The standard error of prediction is 1.3 ee%. The prediction results based on the IR method were in good agreement with the gravimetric method. The robustness of the calibration model was evaluated by varying the concentration of the chiral selector, the pH of the solution, and the organic solvents. The stability of the calibration model was also demonstrated through measuring different sets of samples on different days.  相似文献   

17.
The enantiomeric excess of chiral starting materials is one of the important factors determining the enantiopurity of products in asymmetric synthesis. Fifty‐one commercially available chiral reagents used as building blocks, catalysts, and auxiliaries in various enantioselective syntheses were assayed for their enantiomeric purity. The test results were classified within five impurities level (ie, <0.01%, 0.01%‐0.1%, 0.1%‐1%, 1%‐10%, >10%). Previously from 1998 to 2013, several reports have been published on the enantiomeric composition of more than 300 chiral reagents. This series of papers is necessitated by the fact that new reagents are forthcoming and that the enantiomeric purity of the same reagent can vary from batch to batch and/or from supplier to supplier. This report presents chiral liquid chromatography (LC) and gas chromatography (GC) methods to separate enantiomers of chiral compounds and evaluate their enantiomeric purities. The accurate and efficient LC analysis was done using newly introduced superficially porous particle (SPP 2.7 μm) based chiral stationary phases (TeicoShell, VancoShell, LarihcShell‐P, and NicoShell).  相似文献   

18.
The enantioselective hydrolysis of insoluble (R,S)-ketoprofen ethyl ester to the optically active (S)-ketoprofen was carried out in a dispersed aqueous lipase reaction system induced by the inclusion of chiral cyclodextrins for complexation of the substrate. Hydroxypropyl-beta-cyclodextrin was the most effective chiral selector and disperser giving an enantiomeric excess and conversion yield of 0.99 and 0.49, respectively.  相似文献   

19.
Abstract

The preparation of a series of novel chiral N-(2-hydroxylalkyl)-acrylamides through a lipase-catalyzed resolution of racemic alkanolamines is described. The absolute stereochemistry and enantiomeric excess of the products were determined by a modified Mosher's method. The method was validated for this particular case by the synthesis of an enantiomerically pure product. Moreover, the stereoselective behavior of the lipase in this reaction is discussed.  相似文献   

20.
Kinetic resolution of racemic compounds by enzymatic hydrolysis with non-enantioselective separation of enantiomer products via a separator or ion-pair formation has been quantitatively analyzed. Theoretical results indicate that the removal of chiral products has profound effects on improving the conversion and enantiomeric excess for the desired chiral substrate or product. The analysis was confirmed from lipase-catalyzed hydrolysis of racemic methyl 2-chloropropionate in the presence of pyrrolidine in buffer saturated dichloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号