首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
In the present paper we investigated the effect of the sucrose (Suc) analog palatinose on potato (Solanum tuberosum) tuber metabolism. In freshly cut discs of growing potato tubers, addition of 5 mM palatinose altered the metabolism of exogenously supplied [U-14C]Suc. There was slight inhibition of the rate of 14C-Suc uptake, a 1.5-fold increase in the rate at which 14C-Suc was subsequently metabolized, and a shift in the allocation of the metabolized label in favor of starch synthesis. The sum result of these changes was a 2-fold increase in the absolute rate of starch synthesis. The increased rate of starch synthesis was accompanied by a 3-fold increase in inorganic pyrophosphate, a 2-fold increase in UDP, decreased UTP/UDP, ATP/ADP, and ATP/AMP ratios, and decreased adenylate energy charge, whereas glycolytic and Krebs cycle intermediates were unchanged. In addition, feeding palatinose to potato discs also stimulated the metabolism of exogenous 14C-glucose in favor of starch synthesis. In vitro studies revealed that palatinose is not metabolized by Suc synthases or invertases within potato tuber extracts. Enzyme kinetics revealed different effects of palatinose on Suc synthase and invertase activities, implicating palatinose as an allosteric effector leading to an inhibition of Suc synthase and (surprisingly) to an activation of invertase in vitro. However, measurement of tissue palatinose levels revealed that these were too low to have significant effects on Suc degrading activities in vivo. These results suggest that supplying palatinose to potato tubers represents a novel way to increase starch synthesis.  相似文献   

2.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

3.
Plants possess two alternative biochemical pathways for sucrose (Suc) degradation. One involves hydrolysis by invertase followed by phosphorylation via hexokinase and fructokinase, and the other route-which is unique to plants-involves a UDP-dependent cleavage of Suc that is catalyzed by Suc synthase (SuSy). In the present work, we tested directly whether a bypass of the endogenous SuSy route by ectopic overexpression of invertase or Suc phosphorylase affects internal oxygen levels in growing tubers and whether this is responsible for their decreased starch content. (a) Oxygen tensions were lower within transgenic tubers than in wild-type tubers. Oxygen tensions decreased within the first 10 mm of tuber tissue, and this gradient was steeper in transgenic tubers. (b) Invertase-overexpressing tubers had higher activities of glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase, and (c) higher levels of lactate. (d) Expression of a low-oxygen-sensitive Adh1-beta-glucuronidase reporter gene construct was more strongly induced in the invertase-overexpressing background compared with wild-type background. (e) Intact transgenic tubers had lower ATP to ADP ratios than the wild type. ATP to ADP ratio was restored to wild type, when discs of transgenic tubers were incubated at 21% (v/v) oxygen. (f) Starch decreased from the periphery to the center of the tuber. This decrease was much steeper in the transgenic lines, leading to lower starch content especially near the center of the tuber. (g) Metabolic fluxes (based on redistribution of (14)C-glucose) and ATP to ADP ratios were analyzed in more detail, comparing discs incubated at various external oxygen tensions (0%, 1%, 4%, 8%, 12%, and 21% [v/v]) with intact tubers. Discs of Suc phosphorylase-expressing lines had similar ATP to ADP ratios and made starch as fast as wild type in high oxygen but had lower ATP to ADP ratios and lower rates of starch synthesis than wild type at low-oxygen tensions typical to those found inside an intact tuber. (h) In discs of wild-type tubers, subambient oxygen concentrations led to a selective increase in the mRNA levels of specific SuSy genes, whereas the mRNA levels of genes encoding vacuolar and apoplastic invertases decreased. (i) These results imply that repression of invertase and mobilization of Suc via the energetically less costly route provided by SuSy is important in growing tubers because it conserves oxygen and allows higher internal oxygen tensions to be maintained than would otherwise be possible.  相似文献   

4.
As reported in a previous paper (Plant, Cell and Environment 24, 357–365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [14C]glucose revealed that the transformants display a two‐fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re‐synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re‐synthesis in the transformants. Although the absolute rate of starch synthesis in short‐term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild‐type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed‐back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non‐metabolizable sucrose analogue palatinose – but not sucrose itself – stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylase‐expressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type.  相似文献   

5.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

6.
7.
Adenine nucleotides are of general importance for many aspectsof cell function, but their role in the regulation of biosyntheticprocesses is still unclear. It was previously reported thatdecreased expression of plastidial adenylate kinase, catalysingthe interconversion of ATP and AMP to ADP, leads to increasedadenylate pools and starch content in transgenic potato tubers.However, the underlying mechanisms were not elucidated. Here,it is shown that decreased expression of plastidial adenylatekinase in growing tubers leads to increased rates of respiratoryoxygen consumption and increased carbon fluxes into starch.Increased rates of starch synthesis were accompanied by post-translationalredox-activation of ADP-glucose pyrophosphorylase (AGPase),catalysing the key regulatory step of starch synthesis in theplastid, while there were no substantial changes in metabolicintermediates or sugar levels. A similar increase in post-translationalredox-activation of AGPase was found after supplying adenineto wild-type potato tuber discs to increase adenine nucleotidelevels. Results provide first evidence for a link between redox-activationof AGPase and adenine nucleotide levels in plants. Key words: Adenylate kinase, ADPglucose pyrophosphorylase, plastid, redox-regulation, potato, respiration, starch Received 18 September 2007; Revised 12 November 2007 Accepted 13 November 2007  相似文献   

8.
Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.  相似文献   

9.
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.  相似文献   

10.
The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.  相似文献   

11.
Klaus D  Ohlrogge JB  Neuhaus HE  Dörmann P 《Planta》2004,219(3):389-396
In contrast to oil seeds, potato (Solanum tuberosum L.) is characterized by a high amount of starch stored in the tubers. To assess the capacity for oil synthesis in potato tubers, the changes in lipid content and flux into lipid synthesis were explored in transgenic potatoes altered in carbohydrate or lipid metabolism. A strong decrease in the amount of starch observed in antisense lines for ADP-glucose pyrophosphorylase or plastidic phosphoglucomutase had no effect on storage-lipid content. Similarly, potato lines over-expressing the Arabidopsis thaliana (L.) Heynh. plastidic ATP/ADP transporter that contained an increased amount of starch were not altered in oil content, indicating that the plastidic ATP level is not limiting fatty acid synthesis in potato tubers. However, over-expression of the acetyl-CoA carboxylase from Arabidopsis in the amyloplasts of potato tubers led to an increase in fatty acid synthesis and a more than 5-fold increase in the amount of triacylglycerol. Taken together, these data demonstrate that potato tubers have the capacity for storage-lipid synthesis and that malonyl-CoA, the substrate for elongation during fatty acid synthesis, represents one of the limiting factors for oil accumulation.Abbreviations AATP Plastidic ADP/ATP transporter - ACCase Acetyl-CoA:carboxylase - DGAT Acyl-CoA:diacylglycerol acyltransferase - FW Fresh weight - TLC Thin-layer chromatography - WT Wild typeSource for transgenic plant material. Upon request, transgenic potato lines altered in ACCase activity can be obtained from Peter Dörmann. For potato lines with alterations in AATP transporter activity, please refer to H. Ekkehard Neuhaus. Transgenic AGP and PGM lines are available from A. Fernie (Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany).  相似文献   

12.
Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and co-suppression potato transformants with decreased expression of sucrose–phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70–80% decrease in SPS activity led to a 30–50% inhibition of sucrose synthesis and a slight (10–20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water deficit (between –0.12 and –0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to water-stressed wild-type plants. These changes were almost completely suppressed in transformants with a 70–80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.  相似文献   

13.
We showed recently that antisense plants with decreased activity of the plastidic ATP/ADP-transporter protein exhibit drastically reduced levels of starch and a decreased amylose/amylopectin ratio, whereas sense plants with increased activity of the transporter possessed more starch than wild-type plants and an increased amylose/amylopectin ratio. In this paper we investigate the effect of altered plastidic ATP/ADP-transporter protein expression on primary metabolism and granule morphology in more detail. Tuber tissues from antisense and sense plants exhibited substantially increased respiratory activity compared with the wild type. Tubers from antisense plants contained markedly increased levels of free sugars, UDP-Glc, and hexose phosphates, whereas phosphoenolpyruvate, isocitrate, ATP, ADP, AMP, UTP, UDP, and inorganic pyrophosphate levels were slightly decreased. In contrast, tubers from sense plants revealed a slight increase in adenine and uridine nucleotides and in the levels of inorganic pyrophosphate, whereas no significant changes in the levels of soluble sugars and metabolites were observed. Antisense tubers contained 50% reduced levels of ADP-Glc, whereas sense tubers contained up to 2-fold increased levels of this sole precursor for starch biosynthesis. Microscopic examination of starch grain morphology revealed that the size of starch grains from antisense tubers was substantially smaller (50%) compared with the wild type. The large starch grains from sense tubers appeared of a more angular morphology, which differed to the more ellipsoid shape of wild type grains. The results suggest a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase is ATP-limited in vivo and that changes in ADP-Glc concentration determine starch yield, as well as granule morphology. Possible factors linking starch synthesis and respiration are discussed.  相似文献   

14.
15.
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.  相似文献   

16.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

17.
18.
19.
20.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号