首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of bis(L-lysine)Cu(II) chloride dihydrate has been determined by X-ray analysis. The complex crystallizes in the monoclinic space group P21, with cell dimensions a = 5.189(1), b = 16.988(3), c = 11.482(2) Å, β = 93.57(1)°. The position of the Cu atom was found from a Patterson synthesis, the remaining atoms were located with DIRDIF. The structure was refined by least-squares to R = 0.060 and Rw = 0.065 for 2637 observed reflections. The copper(II) atom has an essentially square planar coordination with the two lysine molecules chelated via the carboxy oxygen and the α-amino nitrogen. However the two chlorine atoms form weak interactions with the metal to complete a strongly tetragonally elongated six-fold coordination. The two aliphatic chains have rather different geometries and are extended in a zig-zag mode. Extensive hydrogen bonding links the complex and the water molecules together.  相似文献   

2.
The tetra-aza ligand 3,6-bis(2′-pyridyl)pyridazine (L), when reacting in appropriate conditions with Cu(II) halides, gives rise to polynuclear complexes of general formula [Cu2L(OH)X3]n (X = Cl or Br). The bromine derivative has been studied by X-ray analysis. The crystals are twins by merohedry of class I, space group Pn (P21/n apparent space group), with the following cell constants: a = 13.691(5), b = 6.245(3), c = 10.298(4) Å, β = 103.92(5)°. The structure was refined by least-squares techniques to a final R factor of 0.066. The structure consists of binuclear units joined to each other through bridging bromine atoms to form a polymeric array. The two independent copper atoms of the dinuclear moiety are five-coordinated with a geometry which is intermediate between a square-pyramid and a trigonal-bipyramid.  相似文献   

3.
The preparation, spectral properties, and crystal structure of a mononuclear copper(II) complex of acetylsalicylate and pyridine are reported. The complex exists as bis(acetylsalicylato)bis(pyridine)copper(II) both in the solid state and in chloroform solution. The crystal is monoclinic, space group P21/n, with a = 17.823(5), b = 10.903(4), c = 6.598(2) Å, β = 95.74(2)°. The final refinement used 1472 observed reflections and gave an R of 0.046. The copper atom is surrounded by four atoms in a trans square planar arrangement with two short CuO distances of 1.949(3) Å and two CuN distances of 2.003(4) Å. Two longer CuO distances of 2.623(3) Å are made with the remaining oxygen atoms of the aspirin carboxylate groups.  相似文献   

4.
The structure of the complex [Pt(trans-1,2-di- aminocyclohexane) (acetate)2]·H2O has been determined by X-ray diffraction. This racemic compound is orthorhombic, space group Aba2, a = 20.813(9), b = 7.926(5), c = 17.296(8) Å, Z = 8. The structure was refined on 1214 nonzero Cu Kα reflections to R = 0.028. The square planar environment of Pt includes the amino groups of the diamine in cis positions and oxygens from two monodentate acetates. The PtN and PtO distances average 2.00(3) and 2.02(3) Å, respectively. The bite of the diamine ligand imposes a NPtN angle of 85(1)°, whereas the small OPtO angle of 85(1)° probably results from packing effects. The average plane through the puckered cyclohexyl ring makes an angle of 19° with the PtN2O2 plane. The molecules are stacked by pairs along the b axis. The two molecules of each pair are 180° apart about the stacking axis, and form altogether four NH···O hydrogen bonds.  相似文献   

5.
《Inorganica chimica acta》2001,312(1-2):133-138
The crystal structure and the EPR characterization of the compound Cu [C13H13N3O3] is reported. It crystallizes in the P212121 space group, with a=8.2829(5), b=9.347(2), c=16.499(2) Å and Z=4. The copper ion is in a distorted square planar coordination, bonded to two nitrogen and one oxygen atoms from one dipeptide and to an oxygen atom from a symmetry-related molecule. Thus, neighbor copper atoms at 5.14 Å are connected by equatorial synanti carboxylate bridges giving rise to a chain structure along the b-axis. The chains are connected via hydrogen bonds and cation–π interactions, the latter being provided by the ‘sandwich’ structure involving each copper atom and two tryptophan residues from neighbor molecules. The EPR spectra of polycrystalline sample imply an essentially dx2y2 ground state orbital for the Cu(II) ions. The g-values reflect a slightly distorted axial symmetry around the Cu(II) ions as expected from the structural results. No hyperfine interaction is observed, which is indicative of the presence of exchange interactions between the copper atoms as suggested by the X-ray results as well.  相似文献   

6.
A tetranuclear copper(II) complex [Cu4(NSI)4] · 2C2H5OH · 2H2O (NSI=hydroxethylsalicydeneimine) has been synthesized and characterized by X-ray diffraction analysis. The compound crystallizes in the monoclinic system, space group P2(1), a=9.494(3) Å, b=18.687(5) Å, c=13.149(4) Å, β=110.162(5)°, Z=2, R1=0.0482 and wR2=0.0978. The crystal structure contains a tetranuclear pseudo-cubane core based on an approximately cubane array of alternating copper and oxygen atoms. Each copper atom resides in a distorted square planar coordination environment with one nitrogen and three oxygen atoms from two NSI ligands. The tetranuclear units are linked in the crystal by O-H?O hydrogen bonds and weak Cu?O co-ordination bonds into one-dimensional structure. Variable temperature (5-300 K) magnetic measurements indicate the existence of ferromagnetic interactions among copper atoms. The IR and ESR spectra have also been investigated.  相似文献   

7.
《Inorganica chimica acta》1988,146(1):123-127
The compounds of general formula [Ln(DMF)3- (H2O)6](CF3SO3)3 (Ln = LaEu, Tb, Dy) were synthesized and characterized by microanalysis, conductance measurements, IR absorption (Nd3+) and emission (Eu3+) spectra. The crystal structure of the neodymium compound was determined by X-ray diffraction techniques. The compound crystallizes in the triclinic system, space group P1, a = 8.589(4), b = 11.222(2), c = 12.271(2) Å, α = 56.83(2), β = 62.13(2), γ = 75.14(2)°, V = 875.2 Å3, M = 918.4, Z = 1, Dc = 1.73 g cm−3, λ(Mo Kα) = 0.71073 Å, μ = 1.65 mm−1, F(000) = 456, R = 0.056, Rw = 0.057, for 2979 independent reflections with I > 3σ(I). Nd3+ is coordinated to the oxygen atoms of six independent water molecules at a mean distance NdO = 2.52(1) Å, and to the oxygen atoms of three independent DMF groups at a mean distance NdO = 2.40(2) Å. The coordination polyhedron is a tricapped trigonal prism of point symmetry C3v.  相似文献   

8.
The crystal structure of isothiocyanatotriphenyl- (pyridinium-2-carboxylato)tin(IV) monohydrate is reported. The crystals are monoclinic, space group P21/n, a = 10.349(2), b =12.003(2), c = 19.325(4) Å, β = 97.68(2)°, Z = 4, refined to RF = 0.024 on 4249 observed reflections.The tin(IV) atom is five-coordinate, being bound to three phenyl groups, the isothiocyanato nitrogen atom and an oxygen from the picolinic acid. The geometry around the tin atom is trigonal bipyramidal, with the three phenyl groups occupying the equatorial positions, while the picolinic acid oxygen and the isothiocyanato nitrogen are coordinated axially. The acidic proton of picolinic acid has shifted position in the complex, and is bound to the heterocyclic nitrogen atom. The acid is thus coordinated in the form of a zwitterion. These trigonal bipyramidal units are linked together as dimers by pairs of water molecules, each of which hydrogen- bonds to the non-coordinated carboxylate oxygen atoms of both picolinic acid molecules, plus the heterocyclic nitrogen atom of one picolinic acid molecule. For complex formation with the protonated acid, theheterocyclic nitrogen should be alpha to the carboxylic acid group.  相似文献   

9.
The structures of [(CuS2CT)2dppm]2 (I) (T = o-tolyl; dppm = bis(diphenylphosphino)methane) and [CuS2CTdppm]2 (II) have been determined by X-ray methods. Crystals of I are monoclinic, space group P21/n, with a = 15.163(4), b = 18.691(5), c = 13.478(4) Å, β = 96.81(3)°, Z = 2; crystals of II are orthorhombic. space group Pccn, with a = 23.267(4), b = 13.016(3), c = 20.731(5) Å, Z = 4. The structures of I and II have been solved by Patterson and Fourier methods and refined by full-matrix least-squares to R = 0.082 for I and 0.092 for II. The structure of I consists of centrosymmetric tetranuclear complexes in which two pairs of Cu atoms are triply bridged by a dppm ligand and two dithiocarboxylate groups from the dithio-o-toluate ligands. These last behave differently: one of them through a sulphur atom is also bonded to a Cu atom of the other pair so forming a tetranuclear complex. The Cu atoms of each pair show different coordination: Cu(1) displays a distorted trigonal and Cu(2) a distorted trigonal pyramidal geometry. The structure of II consists of dimers, in which each copper atom, doubly bridged by two dppm ligands, completes a distorted trigonal pyramidal coordination through two sulphur atoms from dithio-o-toluate anions acting as chelating ligands. In both compounds the phenyl group of the dithio-o-toluate anions is orthogonal to the corresponding CS2 group. Both complexes give methyldithio-o-toluate in high yields by reaction with methyl iodide.  相似文献   

10.
The interactions between N-tosylamino acids and cobalt(II), nickel(II) and zinc(II) ions in aqueous solution and in the solid state have been investigated. From concentrated aqueous solutions, compounds of general formula [M(II)(N-tosylaminoacidato)2(H2O)4](M = Co(II), Ni(II) and N-tosylaminoacidato = N-tosylglycinate (Tsgly?), N-tosyl-α- and -β-alaninate (Ts-α- and Ts-β-ala?); M = Zn(II) and N-tosylaminoacidate = Tsgly?, Ts-β-ala?) and [Zn(II)(N- tosylaminoacidato)2(H2O)2] were isolated and characterized by means of thermogravimetric, electronic and infrared spectra. For two of them: [Co(Tsgly)2(H2O)4](I) and [Zn(Ts-β-ala)2(H2O)4](II) the crystal and molecular structures were also determined. Both compounds crystallize in the monoclinic space group P21/c, with two formula units in a cell of dimensions: a = 13.007(6), b = 5.036(2), c = 18.925(7) Å, β = 102.33(3)° for (I) and a = 14.173(6), b = 5.469(2), c = 17.701(7) Å, β = 106.63(3)° for (II). The structures were solved by the heavy-atom method and refined by least-squares calculations to R = 0.031 and 0.064 for (I) and (II) respectively. The cobalt and zinc atoms lie in the centers of symmetry, each bonded to two amino- acid molecules through a carboxylic oxygen atom and four water molecules in a slightly tetragonally distorted octahedral geometry. The second carboxylic oxygen atom is not involved in metal coordination. Electronic and X ray-powder spectra suggest that the tetrahydrate complexes of Co2+, Ni2+ and Zn2+ ions of the same amino acids are isomorphous and isostructural. No coordinative interactions between ligand and metal ions were found in aqueous solution on varying the pH values before hydroxide precipitation.  相似文献   

11.
The crystal structure of chlorotriphenyl(quinolinium-2-carboxylato)tin(IV) monohydrate is reported. The crystals are monoclinic, space group C2/c with cell parameters a = 20.048(3) Å, b = 11.724(1) Å, c = 23.291(3) Å, ]gb = 113.42(1), Z = 8, refined to RF = 0.034 on 3331 observed reflections. The tin(IV) atom is five-coordinate, being found to three phenyl groups, the chlorine atom and an oxygen from the quinaldic acid. The geometry around the tin atom is trigonal bipyramidal, with the three phenyl groups occupying the equatorial positions, and the chlorine and quinaldic acid oxygen, the apical ones. The acidic proton of quinaldic acid has shifted position in the complex, and is bound to the heterocyclic nitrogen atom.The acid is thus coordinated in the form of a zwitterion. These trigonal bipyramidal units are linked together as dimers by pairs of water molecules, each of which hydrogen-bonds to the non-coordinated carboxylate oxygen atoms of both quinaldic acid molecules, plus the heterocyclic nitrogen atom of one quinaldic acid molecule. For complex formation with the protonated acid, the heterocyclic nitrogen should be alpha to the carboxylic acid group.  相似文献   

12.
《Inorganica chimica acta》2001,312(1-2):245-248
The structure of the title compound has been determined by X-ray diffraction at 190 K. The complex has an all trans configuration with an elongated tetragonally distorted octahedral CuO6 chromophore. The elongated axis corresponding to the trans-Cu–O(ether) bonds. The ligand molecules are bidentate via the carboxyl and the 3-ether O atoms; the 6-ether O atoms are not coordinated and are remote from the Cu centres. The bond lengths to the Cu centres are Cu–O(ether) 2.355 Å, Cu–O(Carboxyl) 1.933 Å and Cu–OH2 1.995 Å.The EPR spectrum of both the powder and frozen solution forms is typical of a rhombic system with a dx2y21 electronic configuration. There were no significant differences in spectra recorded over the temperature range 77 K to room temperature. These results are discussed in relation to earlier published results on closely related oxa-carboxyl complexes.  相似文献   

13.
The single crystal X-ray structures of (CuICH3CN4·dibenzo-18-crown-6 (I) and (CuICH3CN) (II) have been determined at room temperature [(I) C28H36Cu4I4N4o6, monoclinic space group P21/n, a = 10.116(4), b = 18.092(8), c = 22.211(9) Å, β = 98.66(3)°, Z = 4; (II) C2H3CuIN, orthorhombic pBN21, a = 13.618(8), b =8.742(2), c = 4.298(2), Z = 4]. (I) exists as a distorted cube with copper and iodine at alternate corners, the fourth coordination site copper occupied by an acetonitrile molecule coordinated through nitrogen. The cluster contains no crystallographic symmetry element and CuCu distances average 2.770(5) Å. The dibenzo-18-crown-6 displays only second sphere type interactions with cluster. (II) displays a pleated double chain type structure with distorted rectangles of alternating Cu and I atoms sharing opposite edges in infinite array. Copper displays tetrahedral geometry by coordination to three iodine atoms and a nitrogen bound acetonitrile molecule.  相似文献   

14.
Two new coordination complexes, Cu(datz)Cl2 and Cu(datz)2Cl2, where datz is 1,5-diaminotetrazole, have been obtained by the reaction of copper(II) chloride with datz. For one of them, Cu(datz)2Cl2, the crystal structure, magnetic susceptibility and thermal properties are reported. For the other compound only spectroscopic and thermal properties are presented. In Cu(datz)2Cl2 the Cu atoms were found to be octahedrally coordinated. Equatorial positions are occupied by two chloride anions and two tetrazole ligands via their N4 donor atoms. Surprisingly, the amino groups at the N1 atom of the tetrazole ring of nearby molecules are in axial positions. Each copper atom is linked with four others through the datz molecules to form 2D polymeric networks parallel to the yz plane. Magnetic properties of Cu(datz)2Cl2 and the data of quantum-chemical calculations of molecular electrostatic potential and energies of hydronation of nitrogen atoms for datz using MP2/6-31G* and B3LYP/6-31G* levels of theory are in agreement with the structural data obtained.  相似文献   

15.
The base-catalyzed condensation reactions of formaldehyde with the copper(II) chelates of α-alanine and C-phenylglycine result in the formation of bis(4R-oxazolidine-4′-carboxylato)copper(II) where R = methyl and phenyl respectively. The 4-methyl complex, C10H20N2O8Cu, crystallizes in the monoclinic space group P21/n with a = 9.141(2), b = 7.335(3), c = 11.112(3) Å, β = 103.87(2)° and Z = 2. The structure has been refined to R = 0.026 and Rw = 0.031 based on 749 independent reflections collected, 651 used. The geometry about copper is essentially a (4 + 2)-elongated octahedral structure. The 4-phenyl derivative, C20H20N2O6Cu, crystallizes in the monoclinic space group P21/c with a = 11.939(4), b = 8.887(2), c = 8.611(3) Å, β = 95.61(3)° and Z = 2. Refinement of the structure converged to R = 0.062 and Rw = 0.071 based on 1003 reflections collected and 865 used. The structure of the 4-phenyl complex resembles that of the 4-methyl derivative and differs mainly from the latter in being anhydrous.  相似文献   

16.
17.
The crystal structure of the title compound, SnCl(C6H5)(C4H9)[S2CN(C2H5)2], was determined and refined to an R factor of 3.2% for 4876 reflections. The molecule contains five-coordinate tin in a distorted trigonal bipyramidal arrangement with the tin atom lying 0.20 Å below the equatorial plane formed by one of the sulphur atoms, S(1), and the donor carbons of the butyl and phenyl groups. The chlorine and the other sulphur atom, S(2), occupy axial sites, making a S(2)SnCl angle of 156.85(1)°. The SnS(2) bond is markedly elongated (2.764(1) Å) compared to the SnCl bond (2.449(1) Å) and the SnS(1) bond (2.454(1) Å). The structure resembles those of analogues such as (C6H5)2Sn(glygly) in having both hydrocarbon ligands located in the equatorial plane. Crystal data: space group P1: a = 8.291(2) Å, b = 14.726(3) Å, c = 9.509(2) Å, α = 96.24(2)°, β = 107.02(3)°, γ = 116.70(2)°, Z = 2, R = 3.2% for 4876 independent reflections.  相似文献   

18.
A number of copper(II) complexes of tridentate ligands with various donor atoms have been studied in an attempt to duplicate the unusual reactivity patterns and accompanying spectral changes of the copper(II) center in galactose oxidase. Results indicate that in order to match the optical and electron spin resonance spectral change observed upon CN? binding by the enzyme, an equatorial, negative ligand must be displaced in a small molecule model. The crystal and molecular structure of the best model complex was solved by a single crystal X-ray diffraction study. The compound, monoacetato-1,3-bis(2-(4-methyl-pyridyl)imino)isoindolatocopper(II), crystallizes in the centro-symmetric triclinic space group Pī with a = 7.392(3) Å, b = 13.782(5) Å, c = 23.422(12) Å, α = 92.08(3)°, β = 104.11(5)°, γ = 109.98(4)°, V = 2156(1) Å3, d(obsd.)(calc.)=(1.43)(1.44) g/cm?3 for mol wt of 466.7 and Z = 4. Diffraction data were collected with a Syntex Pl diffractometer using graphite-monochromatized Cu radiation (λ = 1.5418 Å). The copper atoms were located from a Patterson synthesis; all other nonhydrogen atoms were located via difference. Fourier techniques, and hydrogen atoms were placed in calculated positions. Final refinement resulted in discrepancy indices of R = 0.089 and “Goodness to Fit” = 3.68 for all 3608 reflections having (I) ? 3σ(I) (5°<2θ<100°). There are two unique molecules in the asymmetric unit that are monomeric and well separated. The geometry around the copper atom is approximately square pyramidal, with the coordination sphere derived from three nitrogens of the tridentate ligand, one oxygen from the acetate unit, and an oxygen atom of a water molecule occupying an axial position. The structure is surprising both in that an axial water molecule is present and that the remaining four ligand atoms to the copper atom are rather distorted from a planar configuration. The plane defined by the copper, N5, and N3 atoms intersects the plane defined by the copper, Nl, and Ol, atoms forming a “twist angle” of 25.0° (0.0° would be ideal for a planar inner coordination sphere). The stereoelectronics of the inner coordination spheres of the type II Cu(II) enzymes galactose oxidase and superoxide dismutase are discussed and appropriate comparisons are made with emphasis on the origin of spectral changes observed upon anion binding.  相似文献   

19.
The compound VOCl2·2(3-Etpy)·H2O (Etpy = ethylpyridine) was prepared by slow hydrolysis of the toluene suspension obtained from the reaction of VCl4 with 3-ethylpyridine The crystal was found to be monoclinic C2/c, Z = 4, ϱ(calc.) = 1.426 × 103 kg m−3, a = 13.281(5), b = 13.989(7), c = 9.277(8) Å, V = 1723(2) Å3 β = 90.53(5)°.Final full matrix least-square refinement with anisotropic thermal parameters for all non-hydrogen atoms gave R = 0.039, Rw = 0.042, Rg = 0.053. The vanadium atom is hexacoordinate with the pyridine ligands in mutually trans positions in the plane containing the Cl atoms. The O vanadyl atom is in an axial position trans to the coordinated H2O molecule, and the OVO line is a binary axis for the molecule.  相似文献   

20.
The title compound, [C18H45N6O3Pt3]2(SO4)3·14H2O, belongs to space group C2/c, with a = 25.90(2) Å, b = 14.33(2) Å, c = 23.74(3) Å, β = 122.88(7)°, and Z = 4. The structure was refined on 2899 independent nonzero reflections to an R factor of 0.042. The crystal contains hydroxobridged cyclic [Pt3(OH)3(C6H14N2)3]3+ ions, in which the Pt3O3, ring has a chair conformation. The coordination around each Pt atom is square planar and the cyclohexyl ring lies roughly in the same plane. A large cavity between two trimeric ions related by a twofold axis is filled with one SO42- ion and five water molecules, which participate in an intricate network of hydrogen bonds among themselves and with the hydroxo and amino groups of the complex cation. These units are held together in the crystal by stacking interactions between Pt(OH)2(C6H14N2) “planes” belonging to adjacent molecules, as well as by hydrogen bonds involving the remaining SO42- ions and water molecules. The presence of the cyclohexane ring precludes λ-δ interconversion in the chelate ring and imparts rigidity to the Pt(trans-dach)2+ unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号