首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1986,120(2):145-152
Initial steps of the interaction of Ru3(CO)12, Fe3(CO)12, Fe2Ru(CO)12 and H2FeRu3(CO)13 clusters with hydrated alumina surfaces have been studied by FT-IR spectroscopy combined with data handling procedures. The first stage of the interaction is a pure physisorption. At the second stage the metal-metal bonds split producing a large variety of mobile subcarbonyls. In the case of Fe3(CO)12 the subcarbonyls form molecular Fe(CO)5, while at the bimetallic clusters they form molecular Fe- (CO)5 and Ru3(CO)12. Fe(CO)5 loses CO ligands producing Fe2+ and Fe3+ anchored ions. Ru3(CO)12, through further intermediate subcarbonyls, slowly decomposes into incipient anchored species RuO- (CO)2, RuII(CO)2 and RuIII(CO)2.  相似文献   

2.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

3.
trans-Dioxoruthenium(VI) porphyrin complexes have been developed as one of the best-characterized model systems for heme-containing enzymes. Traditionally, this type of compounds can be prepared by oxidation of ruthenium(II) precursors with peroxyacids and other terminal oxidants under different conditions, depending on the porphyrin ligands. In this work, a new photochemical generation of trans-dioxoruthenium(VI) porphyrins has been developed by extension of the known photo-induced ligand cleavage reactions. Refluxing ruthenium(II) carbonyl porphyrins [RuII(Por)(CO)] in carbon tetrachloride afforded dichlororuthenium(IV) complexes [RuIV(Por)Cl2]. Facile exchange of the counterions in [RuIV(Por)Cl2] with Ag(ClO3) or Ag(BrO3) gave the corresponding dichlorate [RuIV(Por)(ClO3)2] or dibromate [RuIV(Por)(BrO3)2] salts. Visible-light photolysis of the photo-labile porphyrin-ruthenium(IV) dichlorates or dibromates resulted in homolytic cleavage of the two O-Cl or O-Br bonds in the axial ligands to produce trans-dioxoruthenium(IV) species [RuVI(Por)O2] bearing different porphyrin ligands.  相似文献   

4.
The thermal reaction of Ru3(CO)12 with the biologically active acids acetyl salicylic acid (Aspirin), α-methyl-4-(isobutyl)phenylacetic acid (Ibuprofen) and 3α,7α,12α-trihydroxy-5β-cholanic acid (cholic acid) in refluxing tetrahydrofuran, followed by addition of triphenylphosphine, gives the dinuclear complexes Ru2(CO)4(OOCR)2(PPh3)2 (1: R = C6H4-2-OCOMe, 2: R = CHMe-C6H4-4-Bui, 3: C23H39O3). The single-crystal structural analysis of 1 and 2 reveals a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two phosphine ligands occupy the axial positions at the ruthenium atoms. However, chiral carbon atoms in the carboxylic acid undergo racemisation during the thermal reaction.  相似文献   

5.
Reaction of Me2PCH2PMe2 with [Ru3(CO)12] in a 1:1 or 2:1 ratio in the presence of [(Ph3P)2N]CN catalyst gives [Ru3(CO)10(μ-Me2PCH2PMe2)] and [Ru3(CO)8(μ-Me2PCH2PMe2)2] respectively. The complexes were characterized by elemental analysis, IR and 1H and 31P NMR spectroscopies.  相似文献   

6.
《Inorganica chimica acta》1988,147(2):207-209
Reaction of iPrHPCH2PHiPr with [Ru3(CO)12] in the presence of [(Ph3P)2N]CN catalyst gave sequentially [Ru3(CO)10(μ-iPrHPCH2PHiPr)] and [Ru3- (CO)9(μ-H)(μ3-iPrHPCH2PiPr)]. The former complex exists in two isomeric forms. The structures were determined by 1H and 31P NMR spectroscopy.  相似文献   

7.
The electrochromic properties of two new mixed valence ruthenium complexes: K[(NC5H4CH2PO3H2)RuIII(NH3)4(NC)RuII(CN)5] and K[(NC5H4PO3H2)RuIII(NH3)4(NC)RuII(CN)5], where phosphonic acid groups have been introduced at the pyridine ligand, have been studied in homogeneous solution and adsorbed on transparent nanocrystalline SnO2 electrodes. These species exhibit a superior stability with respect to the previously studied, K[(NC5H4CO2H)RuIII(NH3)4NCRuII(CN)5] complex, showing negligible optical density changes after cycling 20 000 times the electrodes between −0.5 and 0.5 V versus SCE.  相似文献   

8.
The complexes [Ru2(CO)5(μ-FpyO)2]2 (1), [Ru2(CO)4(μ-ClpyO)2]2 (2), and [Ru2(CO)4(μ-BrpyO)2]2 (3) were prepared from Ru3(CO)12 and 6-fluoro-2-hydroxypyridine (FpyOH), 6-chloro-2-hydroxypyridine (ClpyOH) and 6-bromo-2-hydroxypyridine (BrpyOH), respectively, in hot toluene. Compounds 1-3 are coordination dimers with a cyclo-RuORuO motif. By carrying out the reaction in hot methanol, the dinuclear complexes [Ru2(CO)4(μ-ClpyO)2(CH3OH)] (4) and [Ru2(CO)4(μ-BrpyO)2(CH3OH)] (5), respectively, were obtained. Treatment of 2 and 3 with triphenylphosphane provided the complexes [Ru2(CO)4(μ-ClpyO)2(PPh3)] (6) and [Ru2(CO)4(μ-BrpyO)2(PPh3)] (7), respectively. The solid-state structures of complexes 1, 2, 4, 6, and 7 were determined by single crystal X-ray diffraction. In all cases, a head-head coordination of the two 6-halopyridinolate ligands at the core was found. In all chlorine- or bromine-containing complexes, the axial coordination site at the ruthenium atom neighbored by two Cl or Br atoms remains unoccupied due to steric shielding by the halogen atom. In the fluoropyridinolate complex 1, the same coordination site is occupied by a carbonyl ligand.  相似文献   

9.
The ferrocenyl-containing diruthenium complexes [Ru2(CO)422-OOCFc)2L2] (Fc = ferrocenyl, fc = ferrocen-1,1′-diyl; 1: L = NC5H4-COOC6H4-OC10H21, 2: L = NC5H4-COOC6H4-OC16H33, 3: L = NC5H4-OOC-fc-C12H25) and [Ru2(CO)422-OOC6H5)2(NC5H4-OOC-fc-C12H25)2] (4) have been synthesized from Ru3(CO)12, ferrocene carboxylic or benzoic acid and the corresponding pyridine derivative. The synthesis of the new pyridine derivative NC5H4-OOC-fc-C12H25 used for the preparation of 3 and 4 is also reported. Complexes 1-4 posses a so-called sawhorse structure consisting of the Ru2(CO)4 backbone and two bridging carboxylato ligands, while the coordination sphere around the ruthenium atoms is completed by the pyridine-derived ligands bonded in the axial positions. The electrochemical behavior of 1-4 and their known analogues [Ru2(CO)422-OOCFc)2L2] (5: L = NC5H5, 6: L = P(C6H5)3, 7: L = NC5H4-OOCFc) has been studied by voltammetry on rotating disc electrode and by cyclic voltammetry.  相似文献   

10.
Trirutheniumdodecacarbonyl (Ru3(CO)12) reacts with 2-hydroxy-6-methylpyridine and with 2-hydroxy-5,6,7,8-tetrahydroquinoline in toluene to form centrosymmetric tetranuclear complexes of the type [Ru(η2, μ-L)(CO)23-L)Ru(CO)2]2, where L is the respective (N,O)-pyridonate ligand (2 and 3). The structures of these complexes, which are almost insoluble in all common solvents, could be determined by single-crystal X-ray diffraction. Reaction of Ru3(CO)12 with 2-hydroxy-4,6-diphenylpyridine in methanol includes ortho-metallation at the phenyl ring, furnishing the dinuclear complex [Ru(κ2N,C-L)(CO)2(μ-OCH3)2Ru(CO)22N,C-L)] (4), where L = (2-(6-hydroxy-4-phenylpyridin-2-yl)phenyl), according to an X-ray crystal structure determination.  相似文献   

11.
The dinuclear ruthenium complexes Ru2(CO)4(OOCC5H4FeC5H5)2L2 (L = NC5H5: 1, L = PPh3: 2) have been synthesized from Ru3(CO)12, ferrocene carboxylic acid and pyridine or triphenylphosphine, respectively. The single-crystal X-ray structure analysis reveals for 1 and 2 a Ru2(CO)4 sawhorse backbone with the two ferrocenyl substituents of the two carboxylato bridges being endo/exo with respect to each other in the solid state. With the new pyridine derivative NC5H4OOCC5H4FeC5H5 (4-ferrocenoyl pyridine) (3) as axial ligand, the complex Ru2(CO)4(OOCC5H4FeC5H5)2(NC5H4OOCC5H4FeC5H5)2 (4) was obtained, the single crystal X-ray structure analysis showing an exo/exo orientation of the two carboxylato bridges in the solid state. The endo/endo orientation is found in the solid-state structure of Ru2(CO)4(HNOCC5H4FeC5H5)2(PPh3)2 (5), the two OCNH bridges being transoïd with respect to each other; this complex is accessible from Ru3(CO)12, ferrocenamide and triphenylphosphine.  相似文献   

12.
《Inorganica chimica acta》1986,122(2):207-211
Treatment of [M(CO)4Ph2PCHPPh2] with CH3- OCH2Cl at 20 °C gave the methoxymethyl derivations [M(CO)4{Ph2PCH(CH2OCH3)PPh2}] (MCr or W), but a similar treatment at 80 °C gave derivatives of a vinylidene diphosphine [M(CO)4(Ph2P)2C CH2]. Treatment of [M(CO)4Ph2PCHPPh2]with CH3CHClOCH3 at 20 or 80 °C gave only [M(CO)4- (Ph2P)2CHCH(CH3)OCH3] (MCr or W). The vinylidene diphosphine complexes [M(CO)4(Ph2P)2- CCH2] (MCr, Mo or W) were even more easily prepared by treating [M(CO)6] with (Ph2P)2CCH2 (vdpp) in hot solvents such as CH3OCH2CH2OCH2- CH2OCH3.Treatment of [W(CO)4vdpp] with LiBun followed by methanol gave [W(CO)4(Ph2P)2CHCH2Bun] (1c), i.e. conjugate addition to the CCH2 occurs. 1c was also made by treating [W(CO)4(Ph2P)2CH] with n-pentyl-iodide. Similarly LiMe was added to [W(CO)4(Ph2P)2CCH2]. Treatment of [M(CO)4- vdpp] with NaCH(COOEt)2 gave [M(CO)4(Ph2- P)2CHCH2CH(COOEt)2] (MW or Mo). Pyrrolidine added to the CCH2 bonds of [M(CO)4vddp] to give [M(CO)4(Ph2P)2CHCH2NC4H8]. 31p and 1H NMR and IR data are given.  相似文献   

13.
14.
Diruthenium compounds supported by carboxylate or mixed carboxylate/carbonate bridging ligands were found to be active catalysts for aerobic oxygenation of organic sulfides. Ru2(OAc)3(CO3) (A), Ru2(O2CCF3)3(CO3) (B) and Ru2(OAc)4Cl (C) promote the conversion of organic sulfide to sulfoxide, and subsequently sulfone in an oxygen atmosphere at ca. 90 °C. The order of catalytic activity is A > B ? C. Catalytic reactions are operative in a number of 1:1 co-solvent-H2O combinations, and the highest reactivity was found in aqueous media.  相似文献   

15.
Mono- and bis-substituted phosphite complexes [Ru3(CO)12−x Lx] (L = tris(2,4-di-tert-butylphenyl) phosphite; x = 1, 2) were synthesized by simple substitution reactions, and were characterized by spectroscopic methods. The monosubstituted ruthenium complex disproportionates in acetone producing a mononuclear ruthenium complex as one of the decomposition products. Single crystal X-ray diffraction analysis established the molecular structure of this new compound.  相似文献   

16.
The electronic structure of H2M3(CO)9S clusters (M = Ru, Os) is discussed on the basis of their He I and He II excited gas-phase photoelectron spectra and on the basis of CNDO quantum mechanical calculations. The PE data clearly demonstrate the cleavage of two direct MM interactions by operation of the bridging hydrides, giving rise to three-center two-electron MHM levels. The μ3-S bonding mode has been described in detail and compared with previous results on related μ3-CY cluster derivatives. The CNDO results on Ru3(CO)9S=, HRu3(CO)9S? and H2Ru3(CO)9S indicate that the μ3-S—cluster interaction is mostly independent of the presence of the bridging hydrides.  相似文献   

17.
Reactions between Ru3(CO)12 and 1,8-bis(diphenylphosphino)naphthalene (dppn) have given the four complexes Ru3(μ-H){μ3-PPh2(nap)PPh(C6H4)}(CO)8 (1), Ru4(μ-H){μ3-PPh2(nap)PPh(C6H4)}(μ-CO)3(CO)7 (2) and Ru4(μ-H)(μ3-C6H4){μ-PPh(nap)PPh2}(CO)11 (3) (in refluxing thf), and Ru44-P(nap)PPh2}(μ4-C6H4)(μ-CO)(CO)9 (4) (in refluxing toluene) which have been characterised by single crystal X-ray studies. They have been formed by aryl C-H and aryl C-P bond cleavage reactions, presumably from an initial (unobserved) chelate dppn complex. The unchanged chelating ligand is found in Ru3(μ-dppm)(CO)8(dppn) (5), obtained from Ru3(μ-dppm)(CO)10 and dppn in refluxing thf.  相似文献   

18.
Base-assisted reduction of [Ru(CO)3Cl2]2 in the presence of NP-Me2 (2,7-dimethyl-1,8-naphthyridine) in thf provides an unsupported diruthenium(I) complex [Ru2(CO)4Cl2(NP-Me2)2] (1). Two NP-Me2 and four carbonyls bind at equatorial positions and two chlorides occupy sites trans to the Ru-Ru single bond. Reaction of [Ru(CO)3Cl2]2, TlOTf, KOH and NP-Me2 in acetonitrile, in a sealed container, affords a bicarbonate bridged diruthenium(I) complex [Ru2(CO)2(μ-CO)2(μ-O2COH)(NP-Me2)2](OTf) (2). The in situ generated CO2 is the source for bicarbonate under basic reaction medium. Isolation of 2 validates the decarboxylation step in the base-assisted reduction of [RuII(CO)3Cl2]2 → [RuI2(CO)4]2+.  相似文献   

19.
The reaction of Cp*2NbBH4 (Cp* = η5-C5Me5) with Ru3(CO)12 gave a mixture of compounds, from which only [Cp*2Nb(CO)2]2[Ru6(CO)16C] (1) could be characterized by spectroscopic and crystallographic methods. 11B NMR spectroscopy proved that interstitial boron may be present in other Ru6 clusters, but these compounds did not crystallize. The reaction of Cp*2NbBH4 with Co2(CO)8 gave among others the salts [Cp*2Nb(CO)2]2[Co6(CO)15C] (4) and [Cp*2Nb(CO)2]3[Co13(CO)24C2] (5), which were examined by X-ray diffraction studies. The true nature of the interstitial atoms in 5 was deduced from electrochemical investigations, which reveal similar redox properties as for the already known [Co13(CO)24C2]3− anion.  相似文献   

20.
Coordination compounds of chelating 8-methylthioquinoline (MTQ) with the complex fragments ReI(CO)3Cl, [RuII(bpy)2]2+, [RhIII(C5Me5)Cl]+, [IrIII(C5Me5)Cl]+, and PtIVMe4 were synthesized and structurally characterized. Whereas the ruthenium(II) complex displays the strongest preference of bonding to N versus S, the compound (MTQ)PtMe4 shows the most balanced metal-donor bonding within the chelate ring due to a relatively short bond to S (2.319 Å) versus N (2.150 Å). The complex fac-(MTQ)Re(CO)3Cl exhibits a particularly long metal-sulfur bond at 2.472 Å. Cyclic voltammetry of [(MTQ)Ru(bpy)2](PF6)2 reveals one reversible oxidation to RuIII and three closely spaced reduction waves for the coordinated ligands. In comparison with the imine/thioether chelate ligand 1-methyl-2-(methylthiomethyl)-1H-benzimidazole (mmb) the MTQ ligand with its more rigid chelate setting N(sp2)-C(sp2)-C(sp2)-S forms generally shorter M-S bonds and displays stronger π acceptor behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号