首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six new azo dyes containing of 5(4H)-oxazolone ring were prepared by diazotization of 4-aminohippuric acid and coupling with N,N-dimethylaniline, 1-naphthol and 2-naphthol and condensation with 4-fluoro benzaldehyde or 4-trifluoromethoxy benzaldehyde. The new compounds were fully characterized by spectroscopic techniques. All synthesized compounds exhibited high tyrosinase inhibitory behavior. The results of mushroom tyrosinase inhibition assays indicate that the 4-trifluoromethoxy derivatives have high degrees of inhibition and N,N-dimethylaniline derivatives are better for tyrosinase inhibition than 1-naphthol and 2-naphthol derivatives. All synthesized azo compounds (4a4f) showed the most potent mushroom tyrosinase inhibition, comparable to that of Kojic acid and l-mimosine, as reference standard inhibitors.  相似文献   

2.
A new class of potent and selective PDE5 inhibitors is disclosed. Guided by X-ray crystallographic data, optimization of an HTS lead led to the discovery of a series of 2-aryl, (N8)-alkyl substituted-6-aminosubstituted pyrido[3,2b]pyrazinones which show potent inhibition of the PDE5 enzyme. Synthetic details and some structure–activity relationships are also presented.  相似文献   

3.
A series of cis-restricted 1,4- and 1,5-disubstituted 1,2,3-triazole analogs of combretastatin A-4 (1) have been prepared. Cytotoxicity and tubulin inhibition studies showed that 2-methoxy-5-((5-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)aniline (5e) and 2-methoxy-5-(1-(3,4,5-trimethoxybenzyl)-1H-1,2,3-triazol-5-yl)aniline (6e) were two of the most active compounds. Molecular modeling studies revealed that the N-2 and N-3 atoms in the triazole rings in 5e and 6e did not form hydrogen bonds with the amino acids in the anticipated pharmacophore.  相似文献   

4.
Nucleoside bases like uracil, pharmacophoric triazoles and benzimidazolones have been used during the present study to design molecular matrices for antitubercular activity, employing Click Chemistry. Click triazoles 4/7/10 have been obtained by the reaction of 4-(Azidomethyl)-2H-chromen-2-ones/quinolin-2(1H)-ones 3 and propargyl ethers 2/6/9 derived from theophylline/6-methyl uracil/2-benzimidazolone respectively. In addition to spectral data structures have been confirmed by single crystal X-ray diffraction studies in case of uracil bis alkyne (6) and theophylline mono triazole (4c). Theophylline linked mono triazoles, 4(a-d) and 6-methyl uracil linked bis triazoles, 7(a-e) have been found to inhibit Mycobacterium tuberculosis H37Rv with MIC values in the range 55.62–115.62 μM. Benzimidazolone bis triazoles, 10(a-n) showed better activity with MIC in the range 2.33–18.34 μM. Molecular modeling studies using Surflex-Dock algorithm supported our results.  相似文献   

5.
Studies of the thermolyses of 4-alkyl substituted 1,2,4-triazoles was reviewed. They were observed to rearrange at 200–350 °C to the corresponding 1-alkylated triazoles. When substituted in the 4-position with aryl- or vinylic substituents the triazoles were inert to thermolysis, contrary to what was observed for the 4-alkyl- and 4-allyl substituted systems. The mechanisms for the reactions were elucidated, e.g., by studies of substituents effects and by kinetic measurements in solution as well as for the neat samples. Reactions in solutions were slow. The rearrangements in melts of the neat triazoles readily proceeded to the products, and were proposed to take place via a series of nucleophilic displacement steps. X-ray crystallographic measurements of selected structures, showed that the interatomic distances and angles between the relevant atoms in these structures, to a large degree resembled the geometry expected for the SN2-type transition states proposed for the rearrangement mechanism. Thus, thermolyses of a series of triazole structures at temperatures below their melting points, confirmed that rearrangements actually did take place. The “kinetics” of the reactions in the crystalline state were investigated and rate constants and thermodynamic data were correlated with the structural characteristics of the crystals.  相似文献   

6.
Trypanosoma cruzi trans-sialidase (TcTS) plays a key role in the recognition and invasion of host cells and in enabling the parasite to escape the human immune response. To explore this potential drug target, we have synthesized a small library of substrate analogues based on 1,4-disubstituted 1,2,3-triazole derivatives of galactose modified at either the C-1 or C-6 positions. This was achieved by coupling the appropriate azido-sugars with a panel of 23 structurally diverse terminal alkynes by using the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, giving a library of 46 derivatives in good to excellent yield and with complete regioselectivity. The sugar triazoles showed weak inhibition towards TcTS-catalyzed hydrolysis of 2′-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid in vitro (<40% inhibition at 1 mM concentration); many of the compounds assessed proved to be acceptor substrates for the enzyme. Despite this modest inhibitory activity, in vitro trypanocidal activity assays against the trypomastigote form of T. cruzi Y strain revealed several compounds active in the low 100s of μM range. Further assessment of these compounds against cultured mouse spleen cells suggests a specific mode of anti-parasite action rather than a generic cytotoxic effect.  相似文献   

7.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N1-alkyl, an N1-methoxy, and several N1-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N1-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37°C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (μM×min) required to effect 50% inhibition (IC50): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

8.
A series of N-alkyl benzisoselenazol-3(2H)-ones has been obtained and transformed to corresponding diselenides by the reduction with sodium borohydride. Additionally, efficient methodology for the oxidative Se–N bond formation by potassium iodate has been presented, new conversion of diselenide to benzisoselenazolone was observed. The GPx-like activity of all synthetized derivatives has been evaluated by NMR. N-Allyl diselenide was up to five times better antioxidant than ebselen. Anticancer capacity towards MCF7 and DU145 cancer cells has been also tested. The highest antiproliferative activity was obtained for N-cyclohexyl benzisoselenazolone.  相似文献   

9.
A series of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides were tailored and synthesized as new potent inhibitors of tyrosinase. The rationale for inhibitor design was based on the active site structural evidence from the crystal structures of bacterial tyrosinase and potato catechol oxidase enzymes. Kinetic and active site binding studies suggested mono-dentate binding of thiadiazole, oxadiazole, and triazole rings to the active site dicopper center of tyrosinase including hydrophobicity contributing to the potent inhibition. Kinetic plots showed mixed-type of inhibition by all 25 compounds. Substitutions at C3 of the triazole ring and C5 of the thiadiazole/oxadiazole rings were found to be playing a major role in the high binding affinity to tyrosinase. The current work may help develop new potent tyrosinase inhibitors against hyperpigmentation including potential insecticides.  相似文献   

10.
Recent target validation studies have shown that inhibition of the protein interaction between annexin A2 and the S100A10 protein may have potential therapeutic benefits in cancer. Virtual screening identified certain 3,4,5-trisubstituted 4H-1,2,4-triazoles as moderately potent inhibitors of this interaction. A series of analogues were synthesized based on the 1,2,4-triazole scaffold and were evaluated for inhibition of the annexin A2–S100A10 protein interaction in competitive binding assays. 2-[(5-{[(4,6-Dimethylpyrimidin-2-yl)sulfanyl]methyl}-4-(furan-2-ylmethyl)-4H-1,2,4-triazol-3-yl)sulfanyl]-N-[4-(propan-2-yl)phenyl]acetamide (36) showed improved potency and was shown to disrupt the native complex between annexin A2 and S100A10.  相似文献   

11.
The propargyl alcohol on reaction with alkylazides under Sharpless conditions through click chemistry concept gave exclusively 1,4-disubstituted triazoles 2. The compounds 2 were oxidized to aldehydes 3 followed by reaction with aniline resulted Schiff’s bases 4. The compounds 4 was further reacted with various aldehydes having α-hydrogen using molecular iodine as a catalyst and obtained 2-alkyl triazole-3-alkyl substituted quinoline derivatives 5. All the final compounds were screened against four human cancer cell lines (THP-1, Colo205, U937 & HeLa) and promising compounds have been identified.  相似文献   

12.
Thed mutagenic activities of 11 N-methyl-N′-alkyl-N-nitrosoureas were tested on Samonellatyphimurium TA1535 and compared with chemical properties (alkylating activity and decompostion rate). In their relative mutagenicities the N-nitrosoureas that had a cyclic N′-alkyl group showed far more mutagenic activity than those having a chain N′-alkyl group. M(1-A)NU and M(2-A)NU, which had the most bulky N′-alkyl group in this series, exhibited lethal effects at high concentrations. The mutagenicity showed a small positive correlation with decomposition rates but not with alkylating activities on 4-(p-nitrobenzyl_prridine. The highest mutagenicity in this series was observed in N-methyl-N′-cyclobutyl-N-nitrosourea.These results suggest that, in this series of N-methyl-M′-alkyl-N-nitrosoureas, structural differences in the N′-alkyl groups had great significance in mutagenicity.  相似文献   

13.
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.  相似文献   

14.
The insect enzyme GH20 β-N-acetyl-d-hexosaminidase OfHex1 represents an important chitinolytic enzyme found in the agricultural pest Ostrinia furnacalis (Guenée) and inhibition of this enzyme has been considered a promising strategy for the development of eco-friendly pesticides. In this article, based on the structure of the catalytic domains of OfHex1, a series of novel glycosyl triazoles were designed and synthesized via Cu-catalyzed azide-alkyne [3+2] cycloaddition reaction. To investigate the potency and selectivity of these glycosyl triazoles, the inhibition activities towards OfHex1 and HsHexB (human β-N-acetylhexosaminidase B) were studied. Particularly compound 17c (OfHex1, Ki = 28.68 μM; HsHexB, Ki > 100 μM) exhibited a suitable activity and selectivity against OfHex1. Furthermore, the possible inhibitory mechanisms of 17c with OfHex1 were studied using molecular docking and MD simulations. The structure-activity relationship results as well as the formed binding patterns may provide promising insights into the further development of novel OfHex1 inhibitors.  相似文献   

15.
(?)-6-(7-Methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (KCA-1490) exhibits moderate dual PDE3/4-inhibitory activity and promises as a combined bronchodilatory/anti-inflammatory agent. N-alkylation of the pyridazinone ring markedly enhances potency against PDE4 but suppresses PDE3 inhibition. Addition of a 6-aryl-4,5-dihydropyridazin-3(2H)-one extension to the N-alkyl group facilitates both enhancement of PDE4-inhibitory activity and restoration of potent PDE3 inhibition. Both dihydropyridazinone rings, in the core and extension, can be replaced by achiral 4,4-dimethylpyrazolone subunits and the core pyrazolopyridine by isosteric bicyclic heteroaromatics. In combination, these modifications afford potent dual PDE3/4 inhibitors that suppress histamine-induced bronchoconstriction in vivo and exhibit promising anti-inflammatory activity via intratracheal administration.  相似文献   

16.
All approved drugs for Alzheimer disease (AD) in clinical practice ameliorate the symptoms of the disease. Among them, acetylcholinesterase inhibitors (AChEIs) are used to increase the cholinergic activity. Among new AChEI, tacrine compounds were found to be more toxic compared to 7-MEOTA (9-amino-7-methoxy-1,2,3,4-tetrahydroacridine). In this Letter, series of 7-MEOTA analogues (N-alkyl-7-methoxytacrine) were synthesized. Their inhibitory ability was evaluated on recombinant human acetylcholinesterase (AChE) and plasmatic human butyrylcholinesterase (BChE). Three novel compounds showed promising results towards hAChE better to THA or 7-MEOTA. Three compounds resulted as potent inhibitors of hBChE. The SAR findings highlighted the C6–C7 N-alkyl chains for cholinesterase inhibition.  相似文献   

17.
18.
Surgical methods guided by exogenous fluorescent markers have the potential to define tissue types in real time. Small molecule dyes with efficient and selective renal clearance could enable visualization of the ureter during surgical procedures involving the abdomen and pelvis. These studies report the design and synthesis of a water soluble, net neutral C4′-O-alkyl heptamethine cyanine, Ureter-Label (UL)-766, with excellent properties for ureter visualization. This compound is accessed through a concise synthetic sequence involving an N- to O-transposition reaction that provides other inaccessible C4′-O-alkyl heptamethine cyanines. Unlike molecules containing a C4′-O-aryl substituent, which have also been used for ureter visualization, UL-766 is not reactive towards glutathione and the cellular proteome. In addition, rat models of abdominal surgery reveal that UL-766 undergoes efficient and nearly exclusive renal clearance in vivo. In total, this molecule represents a promising candidate for visualizing the ureter during a variety of surgical interventions.  相似文献   

19.
Benzylidenehydrazinyl imidazoles ( 3 ) are prepared from 2‐hydrazinyl imidazoles ( 2 ) on treatment with hydrazine. The imine functionality in 3 is utilized to develop 5′‐aryl‐N‐(4‐aryl‐1H‐imidazol‐2‐yl)‐1H‐1,2,3‐triazol‐1‐amines ( 5 ) by 1,3‐dipolar cycloaddition of diazomethane followed by aromatization with I2 in DMSO. Compounds 3 are also explored to prepare 4′‐aryl‐1‐(4‐aryl‐1H‐imidazol‐2‐ylamino)‐3‐chloroazetidin‐2‐ones ( 6 ) on treatment with chloroacetyl chloride. The Molinspiration calculations predicted that 3 , 5 and 6 have molecular hydrophobicity, conformational flexibility, good intestinal absorption and bioactivity scores. The chloro, bromo and nitro substituted imidazolyl azetidinones ( 6c , 6d , 6f ) and nitro substituted imidazolyl triazole ( 5f ) exhibited excellent antibacterial activity on B. subtilis, whereas chloro and nitro substituted imidazolyl triazoles ( 5c , 5f ) showed prominent antifungal activity on A. niger.  相似文献   

20.
The design, synthesis and structure–activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARα/γ agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号