首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

2.
Deprotonation of 4-mercapto-1,2-dithiole-3-thiones with NEt3 followed by reaction with [Ru(H)(Cl)(CO)(PPh3)3] affords virtually quantitative yields of turquoise [Ru(H)(RC3S4)(CO)(PPh3)2] (R = Ph, Mes) in which the heterocycle is bound as a bidentate uninegative ligand through the two exocyclic sulfur atoms. The presence of both possible isomers in each case is indicated by NMR spectroscopy. Reaction of the 4-mercapto-1,2-dithiole-3-thiones with [MoO2(acac)2] results in displacement of the acac ligands and formation of [MoO2(RC3S4)2]. The crystal structures of [Ru(H)(MesC3S4)(CO)(PPh3)2] and [MoO2(MesC3S4)2] have been determined.  相似文献   

3.
The reactions of the Fe(II) and Ru(II) halogenide complexes [Fe(PPh3)2Br2], [Fe(NCCH3)2Br2], [Ru(PPh3)3Cl2], and [Ru(dmso)4Cl2] with GaCp and AlCp, respectively, are investigated. The reactions of [FeBr2L2] with ECp exclusively proceed via Cp transfer, leading to [FeCp(GaCp)(GaBr2)(PPh3)] (1) (L = PPh3, E = Ga), [FeCp(GaCp)2 (GaBr2)] (2) (L = NCCH3, E = Ga) and [FeCp(μ3-H)(κ2-(C6H4)PPh2)(AlCp)(AlBr2)] (3) (L = PPh3, E = Al), the latter of which is formed via orthometallation of one PPh3 ligand. The reaction of [Ru(dmso)4Cl2] leads to the homoleptic complex [Ru(GaCp)6Cl2] (4) in high yields, while [Ru(PPh3)3Cl2] gives 4 in rather low yields. The reason for this difference in reactivity is investigated and it is shown that Cp transfer and orthometallation are the limiting side reactions of the reaction of [Ru(PPh3)3Cl2] with GaCp. All compounds were characterized by NMR spectroscopy, and single crystal X-ray diffraction studies were performed for 1, 3, and 4.  相似文献   

4.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

5.
The alkylation of the thiolato-S atoms of the dttd- ligand in [RuL1L2dttd] complexes was investigated (L1L2PPh3; L1L2PMe3; L1PPh3, L2PMe3; dttd2−=2,3:8,9-dibenzo-1,4,7,10-tetrathiadecane(−2)). The substitution lability of the phosphine ligands L1 and L2 determines whether one or both of the thiolato-S atoms are alkylated when [RuL1L2dttd] is reacted with alkylhalides. [Ru(PPh3)2dttd], in which one PPh3 is substitution labile, is doubly alkylated on reaction with CH3I yielding [Ru(PPh3)I(Me2-dttd)]I (Me2-dttd=1,10-dimethyl-2,3:8,9-dibenzo-1,4,7,10-tetrathiadecane). Reaction of the substitution inert phosphine complexes [Ru(PMe3)2dttd] and [Ru(PPh3)(PMe3)dttd] with CH3I yields the monoalkylated derivatives [Ru(PMe3)2(Me-dttd)]I and [Ru(PPh3)(PMe3)(Me- dttd)]I, respectively. Analogously, ethyl as well as bromine derivatives can be obtained. The cation in [Ru(PPh3)X(Me2-dttd)]X (XI, Br) proves to be substitution inert under ordinary conditions; the anion X can be exchanged for other singly charged anions via [Ru(PPh3)X(Me2dttd)]2SO4. In concentrated H2SO4, [Ru(PPh3)Br(Me2-dttd)]Br could be reacted to give [Ru(Br2)(Me2dttd)]. All compounds were characterized spectroscopically as well as by elemental analyses. The structure of [Ru(PPh3)I(Me2- dttd)]I was determined by X-ray structure analysis.[Ru(PPh3)I(Me2-dttd)]I (1) crystallizes from CH2Cl2 as 1·3CH2Cl2 in the monoclinic space group P21/c with the following unit cell dimensions: a= 20.103(0.03), b=11.148(0.009), c=26.985(0.03) Å; β=130.71(0.07)°, V=4584(3) Å3 and Z=4. The structure refinement stopped at R1=8.86 and R2= 10.44% because of disorder of the CH2Cl2 solvate molecules. In the cation of 1 Ru is coordinated pseudo-octahedrally by I-, P- and four thioether-S atoms.  相似文献   

6.
By reaction of Tl(C6Cl5)2Cl with Au(C6Cl5)(tht) (tht = tetrahydrothiophen) or [N(PPh3)2] [Au(C6- Cl5)Cl] the gold(III) complexes [Au(C6Cl5)3(tht)] or [N(PPh3)2][Au(C6Cl5)3Cl] respectively, can be prepared. They are the first tris(pentachlorophenyl)- gold(III) complexes to be reported. The ready displacement of tht by other neutral or anionic ligands leads to the synthesis of Au(C6Cl5)3(Ph2PCH2PPh2) or Q[Au(C6Cl5)3X] (Q=N(PPh3)2, PPh3Me or PPh2Me2; X=C6F5, SCN, Br or I).  相似文献   

7.
Ruthenium phosphine complexes with a CO ligand [Ru(tpy)(PR3)(CO)Cl]+ (tpy = 2,2′:6′,2″-terpyridine, R = Ph or p-tolyl), were prepared by introduction of CO gas to the corresponding dichloro complexes at room temperature. New carbonyl complexes were characterized by various methods including structural analyses. They were shown to release CO following the addition of several N-donors to form the corresponding substituted complexes. The kinetic data and structural results observed in this study indicated that the CO release reactions proceeded in an interchange mechanism. The molecular structures of [Ru(tpy)(PPh3)(CO)Cl]PF6, [Ru(tpy)(P(p-tolyl)3)(CO)Cl]PF6 and [Ru(tpy)(PPh3)(CH3CN)Cl]PF6 were determined by X-ray crystallography.  相似文献   

8.
Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphosPh) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphosPh ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphosPh ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ3P] (2) were isolated on cooling to RT. The 31P{1H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ3P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ3P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ3P{CH3CO(CH2)2CO2H}-κ2O](PF6) (6).  相似文献   

9.
《Inorganica chimica acta》1988,151(4):243-248
The interactions of dimeric complex bis-[μ-chloro-chlorotricarbonylruthenium(II)], [Ru(CO)3Cl2]2, and the polymeric complex poly-[μ-dichlorodicarbonylruthenium(II)], [Ru(CO)2Cl2]x, with nucleosides (Nucl) in a 1:1 Ru:Nucl molar ratio for the dimer and 1:2 Ru:Nucl for the polymer, resulted in formation of the monomeric mononucleoside [Ru(CO)3(Nucl)Cl2] and bis-nucleoside [Ru(CO)2(Nucl)2Cl2] complexes, respectively. The dimer [Ru(CO)3Cl2]2 also gave the ionic bis-nucleoside complexes [Ru(CO)3(Nucl)2Cl]Cl in the molar ratio 1:2 Ru:Nucl. The mononucleoside complexes are stable in solution while the bis-nucleoside complexes tend to lose one nucleoside in strong complexing solvents, probably by solvent substitution. The complexes [Ru(CO)3(Nucl)Cl2] and [Ru(CO)2(Nucl)2Cl2] with one N(1)H ionizable imino proton undergo ionization in alkaline solution and the complexes [Ru(CO)3(NuclH+)Cl] and [Ru(CO)2(NuclH+)2], respectively, were isolated. In these deprotonated complexes the nucleosides behave as bidentate ligands, while in the protonated ones they act as monodentate. All Complexes were characterized by elemental analyses and various spectroscopic methods.  相似文献   

10.
The Schiff base, 2-chlorophenylsalicylaldimine (HL1), is formed readily from salicylaldehyde and 2-chloroaniline. After deprotonation, this ligand is found to react as a bidentate mixed-donor chelate with the complexes [RuRCl(CO)(BTD)(PPh3)2] (R = H, CHCHC6H5, CHCHC6H4Me-4, CHCHtBu, CCCPhCHPh; BTD = 2,1,3-benzothiadiazole) to form the compounds [RuR(L1)(CO)(PPh3)2] through displacement of the chloride and BTD ligands. An analogous reaction occurs with the osmium complex [OsHCl(CO)(BTD)(PPh3)2] to provide [OsH(L1)(CO)(PPh3)2]. The compound [Ru(CHCHC6H4Me-4)(L2)(CO)(PPh3)2] is formed through reaction of salicylaldehyde (HL2) with [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base. Two further ligands were investigated to extend the study to encompass 5- and 4-membered chelates; 8-hydroxyquinoline (HL3) and 2-hydroxy-4-methylquinoline (HL4) react with [Ru(CHCHPh)Cl(CO)(BTD)(PPh3)2] and [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base to yield the complexes [Ru(CHCHPh)(L3)(CO)(PPh3)2] and [Ru(CHCHC6H4Me-4)(L4)(CO)(PPh3)2], respectively. The crystal structure of [Ru(CHCHC6H4Me-4)(L1)(CO)(PPh3)2] is reported.  相似文献   

11.
The template alkylation of Li2[Ru(CO)2(S2C6H4)2] (S2C6H42− = 1,2-benzenedithiolate(−2)) by S(C2H4Br)2 yields [Ru(CO)2(dpttd)] (dpttd2− = 3,11,12-dibenzo-1,4,7,10,13-pentathiatridecane(−2)) which is thermally converted into the monocarbonyl complex [Ru(CO)(dpttd)]. The reactions of dpttd-H2 or dpttd2− with [RuCl2(PPh3)3], [RuCl2(DMSO)4], [RuCl3(PhSCH3)3] and RuCl3(NO)·xH2O lead to [Ru(L)(dpttd)] and [Ru(L)(dpttd)]Cl (L = PPh3, DMSO, PhSCH3, NO), respectively, which are practically insoluble in all common solvents. Better soluble complexes are obtained with the new sterically demanding ligand tbu4-dpttd2− = 14,16,18,20-tetra(t-butyl)-2,3,11,12-dibenzo-1,4,7, 10,13-pentathiatridecane(−2); it is obtained in isomerically pure form by the reaction of tetrabuthylammonium-3,5-di (t-butyl)-1,2-benzenethiolthiolate, NBu4[tbu2-C6H2S(SH), with S(C2H4Br)2 and yields on reaction with [RuCl2(PPh3)3] the very soluble [Ru(PPh3)2(tbu4-dpttd)] as well as [Ru(PPh3(tbu4-dpttd)]. The 1H NMR and 31P NMR spectra indicate that in solution [Ru(PPh3)2(tbu4-dpttd)] exists as a mixture of diastereomers, whereas [Ru(PPh3)(tbu4-dpttd)] forms one pair of enantiomers only. This was confirmed by an X-ray structure determination of a single crystal. [Ru(PPh3)(tbu4-dpttd)] crystallizes in space group P21/n with a = 10.496(4), b = 14.888(6), c = 32.382(12) Å, β = 98.04(3)°, Z = 4 and Dcalc. = 1.27 g/cm3, R = 4.84; RW = 5.06%; the ruthenium center is coordinated pseudooctahedrally by one phosphorus, two thiolate and three thiother S atoms.  相似文献   

12.
The reaction of the Tc(II) nitrosyl complex (Bu4N)[Tc(NO)Cl4] with di-(2-picolyl)(NEt)amine in methanol yields the neutral complex [Tc(NO)Cl(py-N(Et)-py)]. The reaction of the Tc(I) nitrosyl complex [Tc(NO)Cl2(HOMe)(PPh3)2] with this tridentate ligand yields cationic [Tc(NO)Cl(py-N(Et)-py)(PPh3)]Cl. These two complexes have been structurally characterized. The reaction of [Tc(NO)Cl2(HOMe)(PPh3)2] with the tetradentate ligand 1,4-bis-(2-pyridylmethyl)-1,4-diazobutane yields a mixture of products including cationic [Tc(NO)Cl(py-NH-NH-py)]Cl and cationic [Tc(NO)Cl(PPh3)(py-NH-NH∼py)]Cl, with a pyridyl terminus left dangling.  相似文献   

13.
The molecular structure of an o-phenylenediamine unit-containing oligophenylene (1), Ph-Ph′-Ph′(2,3-NH2)-Ph′-Ph (Ph = phenyl; Ph′ = p-phenylene; Ph′(2,3-NH2) = 2,3-diamino-p-phenylene), was determined by X-ray crystallography. 1 has a twisted structure, and forms an intermolecular C-H?π interaction network. The -NH2 group of 1 was air-oxidized to an imine, NH, group in the presence of [RuCl2(bpy)2] (bpy = 2,2′-bipyridyl) and gave a ruthenium(II)-benzoquinone diimine complex [Ru(2)(bpy)2](PF6)2 (2: Ph-Ph′-Ph′(2,3-imine)-Ph′-Ph). The molecular structure of [Ru(2)(bpy)2](PF6)2 was confirmed by X-ray crystallography. [Ru(2)(bpy)2](PF6)2 underwent two-step electrochemical reduction with E1/2 = −0.889 V and −1.531 V versus Fc+/Fc. The E1/2’s were located at higher potentials by 91 mV and 117 mV, respectively, than those of reported [Ru(bqdi)(bpy)2](PF6)2 (bqdi = benzoquinone diimine). Electrochemical oxidation of [Ru(2)(bpy)2](PF6)2 occurred at a lower potential by 180 mV than that of [Ru(bqdi)(bpy)2](PF6)2. Occurrence of the easier reduction and oxidation of [Ru(2)(bpy)2](PF6)2 than those of [Ru(bqdi)(bpy)2](PF6)2 is ascribed to the presence of a large π-conjugation system in 2.  相似文献   

14.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

15.
Treatment of [(η6-p-cymene)RuCl(μ-Cl)]2 with Lawesson’s reagent [ArP(S)(μ-S)]2 (Ar = p-C6H4OMe) in the presence of ammonium hydroxide afforded the dinuclear complex [(η6-p-cymene)Ru{μ-η1(S),η2(S,S′)-ArP(O)S2}]2 (1) in which the tripodal [ArP(O)S2]2− ligands bind to the ruthenium atom in both bridging and chelating modes with two non-coordinating PO groups. Interaction of [RuHCl(CO)(PPh3)3] with [ArP(S)(μ-S)]2 and bis(diphenylphosphino)methane (dppm) in the presence of ammonium hydroxide gave the dinuclear complex [Ru(CO){μ3-η1(O),η2(S,S′)-ArP(O)S2}(dppm)]2 (2) in which the tripodal [ArPOS2]2− ligands bind the two Ru atoms via both sulfur and oxygen atoms. Treatment of [Ru(PPh3)3Cl2] with [ArP(S)(μ-S)]2 at reflux in the presence of ammonium hydroxide led to the formation of the dinuclear mixed valence complex [Ru2Cl2(μ-S){μ3-η1(O),η1(S),-η2(S,S′)-ArP(O)S2}(PPh3)3] (3), which contains a [RuII(PPh3)2Cl]+ and [RuIV(PPh3)Cl]3+ moieties by the tripodal [ArPOS2]2− ligand in a μ3-η1(O),η1(S),η2(S,S′) coordination mode and the μ-S2− anion. The crystal structures of 1, 2, and 3·CH2Cl2 along with their spectroscopic and electrochemical properties are reported.  相似文献   

16.
《Inorganica chimica acta》1988,145(2):231-233
The photochemical oxidation reaction of W(CO)6 to [W(CO)4Cl2]2 with CCl4 was applied in the synthesis of [WCl2(CO)3(PPh3)2] and [WCl2(CO)2−- (dppe)].  相似文献   

17.
Treatment of ‘RuCl3 · 3H2O’ with Ph2AsCH2AsPh2 (dpam) in hot EtOH gives either trans-[RuCl2(dpam-As,As′)(dpam-As)2] (1), or cis-[RuCl2(dpam-As,As′)2] (2), depending on the mole ratio. On exposure to light, solutions of 2 isomerise to trans-[RuCl2(dpam-As,As′)2] (3). Treatment of [RuCl2(PPh3)3] with two equivalents of dpam in CH2Cl2 gave a mixture of two products, from which trans-[RuCl2(PPh3) (dpam-As,As′)(dpam-As)] (4) was isolated by recrystallisation. The crystal structures of 1-4 are reported. Complexes 1-3 in CH2Cl2 undergo electrochemical oxidation to Ru(III), and the Ru(III) form of 2 undergoes isomerisation on the voltammetric timescale to the Ru(III) form of 3.  相似文献   

18.
The reaction of [RuCl2(PPh3)3] and [OsBr2(PPh3)3] precursors with a series of heterocyclic bidentate (N, X) ligands, X = S, Se, gave complexes [M(R-pyS)2(PPh3)2], (R = H, 3-CF3, 5-CF3, 3-Me3Si); [M(R-pymS)2(PPh3)2], (R = 4-CF3, 4,6-MeCF3) and [M(R-pySe)2(PPh3)2], (R = H, 3-CF3, 5-CF3), where M is Ru or Os, pyS and pymS the anions of pyridine-2-thione and pyrimidine-2-thione, respectively, and pySe is the anion produced by the reductive cleavage of the Se-Se bond in the dipyridyl-2,2′-diselenide. All of the compounds obtained were characterized by microanalysis, IR, FAB, NMR spectroscopy and by cyclic voltammetry. Compounds [Ru(3-CF3-pyS)2(PPh3)2] · 2(CH2Cl2) (2), [Ru(3-Me3Si-pyS)2(PPh3)2] (4), [Ru(4-CF3-pymS)2(PPh3)2] (5), [Ru(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (8), [Os(3-CF3-pyS)2(PPh3)2] · (CHCl3) (11), [Os(3-Me3Si-pyS)2(PPh3)2] (13), [Os(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (17), [Os(5-CF3-pySe)2(PPh3)2] · 2(H2O) (18) and [OsCl2(4,6-MeCF3-pymS)(PPh3)2] (19) were also characterized by X-ray diffraction. In all cases, the metal is in a distorted octahedral environment with the heterocyclic ligand acting as a bidentate (N, S) chelate system.  相似文献   

19.
Base-assisted reduction of [Ru(CO)3Cl2]2 in the presence of NP-Me2 (2,7-dimethyl-1,8-naphthyridine) in thf provides an unsupported diruthenium(I) complex [Ru2(CO)4Cl2(NP-Me2)2] (1). Two NP-Me2 and four carbonyls bind at equatorial positions and two chlorides occupy sites trans to the Ru-Ru single bond. Reaction of [Ru(CO)3Cl2]2, TlOTf, KOH and NP-Me2 in acetonitrile, in a sealed container, affords a bicarbonate bridged diruthenium(I) complex [Ru2(CO)2(μ-CO)2(μ-O2COH)(NP-Me2)2](OTf) (2). The in situ generated CO2 is the source for bicarbonate under basic reaction medium. Isolation of 2 validates the decarboxylation step in the base-assisted reduction of [RuII(CO)3Cl2]2 → [RuI2(CO)4]2+.  相似文献   

20.
《Inorganica chimica acta》1986,121(2):119-125
Near-UV irradiation of M(CO)4PPh3 (M=Fe, Ru) at 298 K in deoxygenated hydrocarbon solutions containing molecules having a Si-H bond gives clean formation of products of the formula HM(CO)3(PPh3)(Si
). Several isomers of such species are possible and X-ray crystallography has been used to unambiguously establish the isomer formed in the photochemical reaction. The crystal structure of the isomer of HM(SiPh3)CO)3(PPh3) formed by the photochemical reaction of M(CO)4PPh3 with HSiPh3 is reported for M=Fe (1) and Ru (2). Both complexes have the same geometry, a distorted octahedron with the COs meridional and the H cis to both the SiPh3 and the PPh3. The crystals are triclinic, space group P1. Crystal parameters for 2, (followed in square brackets by those for 1), are: a=12.535(3) [12.32(2)], b=14.244(3) [14.50(4)], c=10.174(3) [10.06(2)] Å, α=104.98(2) [106.3(2)], β=98.52(2) [98.2(2)], γ=71.92(2)° [72.0(2)°], V=1663.63 [1637.38] Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号