首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1987,127(2):153-159
The synthesis and characterization of trans-chloro- (ligand)bis(diphenylglyoximato)cobalt(III) complexes [ligand = pyridine (py), α-, β-, or γ-picoline (α-pic, β-pic, γ-pic), 3,5-lutidine (lut), p-toluidine (p-tol) and PPh3] is presented. X-ray crystal structure determination of the pyridine (1) and p-toluidine (6) derivatives has been carried out. Compound 1 crystallizes in the monoclinic system, space group P21/n, with Z = 4 and unit cell parameters a = 23.124(4), b = 13.009(3) and c = 11.204(3) Å, and β= 93.14(2)°. Compound 6 crystallizes in the monoclinic system, space group P21/n, with Z = 4 and unit cell parameters a = 18.792(3), b = 12.540(2) and c = 15.346(3) Å, and β = 97.54(2)°.  相似文献   

2.
The crystal structures of two copper(II) complexes of 4-fluorophenoxyacetic acid (4-FPAH) have been determined by X-ray diffraction. [Cu(4-FPA)2(H2O)2]·2(4-FPAH)·2H2O (1) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 14.808(2), b = 9.832(2), c = 6.847(2) Å, α = 87.77(2), β = 98.41(2), γ = 112.33(2)° and was refined to a residual of 0.038 for 1697 ‘observed’ reflections. The coordination sphere in this complex is tetragonally distorted octahedral comprising two waters [CuO, 1.940(3) Å], two unidentate carboxylate oxygens [CuO, 1.942(2) Å] and two ether oxygens [CuO, 2.471(2) Å]. Two adducted [4-FPAH] acid molecules are linked to the un-coordinated oxygens of the acid ligands by hydrogen bonds [2.547(4) Å]. [Cu2(4-FPA)4(2-aminopyrimidine)2] (2) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 12.688(2), b = 11.422(2), c = 7.951(1) Å, α = 78.74(1), β = 107.51(1), γ = 75.78(1)°, and was refined to a residual of 0.042 for 2683 ‘observed’ reflections. (2) is a centrosymmetric tetracarboxylate bridged dimer with four similar CuO (equatorial) distances [1.967–1.987 Å; 1.977(3) Å mean] and the axial position occupied by the hetero nitrogen of the 2-aminopyrimidine ligand [CuN, 2.176(3) Å]. The Cu---Cu separation is 2.710(1) Å. Crystal data are also presented which confirm the isostructurality of complex (2) with [Cu2(phenoxyacetate)4(2-aminopyrimidine)2], the CoII, MgII and MnII4-fluorophenoxyacetate complexes with their phenoxyacetic and 4-chlorophenoxyacetic acid analogues, and of CdII4-fluorophenoxyacetate with CdII and ZnII phenoxyacetates.  相似文献   

3.
The interactions between N-tosylamino acids and cobalt(II), nickel(II) and zinc(II) ions in aqueous solution and in the solid state have been investigated. From concentrated aqueous solutions, compounds of general formula [M(II)(N-tosylaminoacidato)2(H2O)4](M = Co(II), Ni(II) and N-tosylaminoacidato = N-tosylglycinate (Tsgly?), N-tosyl-α- and -β-alaninate (Ts-α- and Ts-β-ala?); M = Zn(II) and N-tosylaminoacidate = Tsgly?, Ts-β-ala?) and [Zn(II)(N- tosylaminoacidato)2(H2O)2] were isolated and characterized by means of thermogravimetric, electronic and infrared spectra. For two of them: [Co(Tsgly)2(H2O)4](I) and [Zn(Ts-β-ala)2(H2O)4](II) the crystal and molecular structures were also determined. Both compounds crystallize in the monoclinic space group P21/c, with two formula units in a cell of dimensions: a = 13.007(6), b = 5.036(2), c = 18.925(7) Å, β = 102.33(3)° for (I) and a = 14.173(6), b = 5.469(2), c = 17.701(7) Å, β = 106.63(3)° for (II). The structures were solved by the heavy-atom method and refined by least-squares calculations to R = 0.031 and 0.064 for (I) and (II) respectively. The cobalt and zinc atoms lie in the centers of symmetry, each bonded to two amino- acid molecules through a carboxylic oxygen atom and four water molecules in a slightly tetragonally distorted octahedral geometry. The second carboxylic oxygen atom is not involved in metal coordination. Electronic and X ray-powder spectra suggest that the tetrahydrate complexes of Co2+, Ni2+ and Zn2+ ions of the same amino acids are isomorphous and isostructural. No coordinative interactions between ligand and metal ions were found in aqueous solution on varying the pH values before hydroxide precipitation.  相似文献   

4.
The single crystal X-ray structures of (CuICH3CN4·dibenzo-18-crown-6 (I) and (CuICH3CN) (II) have been determined at room temperature [(I) C28H36Cu4I4N4o6, monoclinic space group P21/n, a = 10.116(4), b = 18.092(8), c = 22.211(9) Å, β = 98.66(3)°, Z = 4; (II) C2H3CuIN, orthorhombic pBN21, a = 13.618(8), b =8.742(2), c = 4.298(2), Z = 4]. (I) exists as a distorted cube with copper and iodine at alternate corners, the fourth coordination site copper occupied by an acetonitrile molecule coordinated through nitrogen. The cluster contains no crystallographic symmetry element and CuCu distances average 2.770(5) Å. The dibenzo-18-crown-6 displays only second sphere type interactions with cluster. (II) displays a pleated double chain type structure with distorted rectangles of alternating Cu and I atoms sharing opposite edges in infinite array. Copper displays tetrahedral geometry by coordination to three iodine atoms and a nitrogen bound acetonitrile molecule.  相似文献   

5.
Reaction of cis-(NH3)2Pt(1-MeU)2 (1-MeU = 1- methyluracil anion, C5H5N2O2) with ZnSO4·7H2O leads to the formation of a dinuclear complex of composition [(NH3)2Pt(C5H5N2O2)2Zn(H2O)3]SO4· 2H2O. The compound crystallizes in space group P21/c with a = 10.534(1), b = 17.933(2), c = 11.490(1) Å, β=94.61(1)°, Z=4. The structure was refined to R=0.043 and Rw=0.061. In this compound, Pt is coordinated through N3 to the 1-MeU ligand, while Zn is bound through the two O4 oxygens and completes its distorted square-pyramidal coordination sphere by three aqua ligands. The positions of the two metals relative to their basal donor atoms and the shortness of the PtZn separation (2.760(1) Å) suggest a bonding interaction between the two metals. Using 1H NMR spectroscopy, a formation constant of ca. 114 1 mol?1 for the Pt, Zn complex has been estimated.  相似文献   

6.
Copper(I) is five coordinate in (1,10-phenanthroline)tetrahydroborato(triphenylphosphine)copper(I). This compound crystallizes from either toluene as the yellow, α-form, a = 16.247(8), b = 9.750(7), c = 9.322(5) Å, α = 62.92(4), β = 84.77(4), γ = 84.34(5)°, triclinic P1, Z = 2, or from a xylene/methylene chloride mixture as the red β-form, X-ray cell, a = 13.675(11), b = 10.115(8), c = 9.700(7) Å, α = 95.22(6), β = 96.22(6), γ = 101.02(6)°; neutron cell, as the tetradeuteroborate, a = 13.703(1), b = 10.096(8), c = 9.74(1) Å, α = 95.23(9), β = 96.51(8), γ = 101.04(2)°, triclinic, P1, Z = 2. For both forms, unidentate triphenylphosphine, bidentate 1,10-phenanthroline and unsymmetrical bidentate BH4? completes the copper(I) coordination but there are subtle differences between the two. When the ligand 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, dmdp, replaces 1,10-phenanthroline, the compound obtained is four coordinate with no tpp in the crystal. [C(dmdp)BH4] is monoclinic, Cc, a = 14.522(4), b = 20.07(2), c = 7.718(2) Å, β = 106.17(2)°, Z = 4.  相似文献   

7.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

8.
The crystal and molecular structure of Δ- cis-α- ethylenebis-S-prolinato(1,2-diaminoethane)cobalt(III) perchlorate dihydrate, Δ-cis-α-[Co(SS-EBP)(en)] ClO4· 2H2O, was determined from three-dimensional X-ray diffractometer data. The complex crystallizes in the orthorhombic system, space group P212121 with a = 7.879(4) Å, b = 13.738(9) Å, c = 19.445(2) Å, V = 2104(2) Å3. With Z = 4, the observed and calculated densities are 1.60(2) and 1.605 g cm?3, respectively. The structure was refined by the block- diagonal least-squares technique to a final R = 0.0560 for 1604 observed reflections. The geometry about the cobalt atom is roughly octahedral with the tetradentate SS-EBP (= ethylenebis-S-prolinate ion), assuming cis-α configuration in which the complex possesses two out-of-plane amino acidate (R) rings and the backbone ethylenediamine (E) ring. The E ring conformation is δ. On the other hand, the R rings have λ conformation as well as the en ring. Δ-RNRN?E  λR1  λR2)(λen)-cis-α-[Co(SS-EBP)(en)]+ is one of two possible isomers of this compound which have been isolated and whose absolute configurations have been tentatively assigned by spectroscopy. The crystal and molecular structure determination confirms these assignments.  相似文献   

9.
The crystal structures of the cadmium(II) and lead(II) complexes of phenoxyacetic acid (PAH) have been determined by single crystal X-ray diffraction techniques. The cadmium complex, [Cd(PA)2(H2O)2] (1), space group C2, with Z = 2 in a cell of dimensions, a = 11.801(2), b = 5.484(1), c = 13.431(3) Å, β = 100.87(2)°, possesses a distorted trapezoidal bipyramidal coordination around the metal atom, involving two water oxygens [2.210(5) Å] and four carboxyl oxygens from two symmetrical bidentate phenoxyacetate ligands [2.363(4), 2.365(4) Å] with Cd lying on the crystallographic two- fold axis. The lead complex, [Pb2(PA)4(H2O)]n(2) is triclinic, space group P1, Z = 2, with a cell of dimensions, a = 10.135(4), b = 10.675(3), c = 19.285(9) Å, α = 114.66(3), β = 91.94(3) and γ = 114.99(3)°. (2) is a two-dimensional polymer with a repeating dimer sub-unit. The first lead [Pb(1)] has an irregular MO8 coordination [2.34?2.96(2) Å: mean, 2.63(2) Å] involving the water molecule, two oxygens from an asymmetric bidentate carboxylate group, two from a bidentate chelate [O(ether), O(carboxylate)] group and three from bridging oxygens, one of which also provides a polymer link to another symmetry generated lead. The second lead [Pb(2)] is irregular seven-coordinate [PbO, 2.48?2.73(2) Å: mean, 2.61(2) Å] with three bonds from the bridging groups, two from an unsymmetrical bidentate carboxylate (O, O′) group and one from a second carboxyl group which also bridges two Pb(2) centres in the polymer.  相似文献   

10.
The outer sphere reductions of Co(NH3)5B3+ by Fe(CN)5A3− have been studied. The observed pseudo first order rate constants (Co complex in excess) obey the dependence kobs=Kosket[Co]/(1 +Kos[Co]), as expected for outer sphere electron transfer reactions. Values of the fundamental electron transfer rate constants ket have been determined, along with the equilibrium constant Kos for a range of reactions in which A and B are pyridyl ligands of different sizes. The first order electron transfer rate constants vary in a manner that is consistcnt with adiabatic electron transfer. The outer sphere ion pairing equilibrium constants Kos have been calculated: Kos=8.6 ± 0.1 × 102 M−1 when A and B=pyridine; Kos=1.07 ± 0.09 × 103 M−1 where A=pyridine, B=1-phenyl-3-(4-pyridyl)propane; Kos=1.86 ± 0.11 × 103 M−1 when A=4,4′-bipyridine, B=pyridine; Kos=1.27 ± 0.08 × 103 M−1 when A=4,4′-bipyridine, B=4-phenylpyridine. Distances of closest approach between the metal centers in the reactive ion pairs are compared, and it is concluded that there is a common mechanism, in which the ammonia side of the cobalt complex approaches the cyano side of the iron complex in each reactive ion pair.The distance of closest approach between the two metal centers (a) was calculated from the experimental values for the ion pairing equilibrium constant Kos at 25 °C: 5.2 Å when A=4,4′-bipyridine, B=pyridine; 5.4 Å when A=4,4′-bipyridine, B=4-phenylpyridine; 5.5 Å when A=pyridine, B=1-phenyl-3-(4-pyridyl)propane; 5.7 Å when A=B=pyridine. These relatively short metal-metal distances, when compared to the X-ray structure of the compound [Co(NH3)5(4-phenylpyridine)]2[S2O6]3· 4H2O, do not support an ion pair orientation in which the two substituted pyridine ligands A and B are oriented toward each other. [P21/c,a=7.399(3), b=22.355(10), c=13.776(4) Å, β=92.02(3)°, R=0.070.] The crystallographic results show that if the two pseudo-octahedral coordination spheres are oriented in the reactive ion pair so that an ammonia face of the cobalt complex is at hydrogen bonding distance from a cyano face on the iron complex, the metal-metal distance is 5.3 Å, a distance which is in agreement with the kinetic results.  相似文献   

11.
《Inorganica chimica acta》1989,161(2):247-251
An X-ray structure determination is reported for the N-oxide-bridged dimeric complex [Co(poph)- (NCS)2]2 with 2-pyridinecarboxaldehyde 1-oxide 2′-pyridinylhydrazone (poph). The complex is monoclinic, P21/c, with a = 12.460(7), b = 9.884(3), c = 16.562(8) Å, β= 127.60(2)° and Z = 4. The ligand coordinates as a planar ONN tridentate via the N-oxide oxygen and the hydrazone and pyridyl nitrogens. A second out-of-ligand-plane bond from the N-oxide oxygen to another cobalt produces a centrosymmetric N-oxide-bridged structure. The in-ligand and out-of-ligand-plane CoO distances are 2.028(5) and 2.460(5) Å, respectively. Each cobalt(II) is octahedrally coordinated by two cisN- bonded thiocyanates, by an ONN-bonded poph molecule, and by a bridging N-oxide oxygen. This is the first structure report of a pyridine N-oxide. bridged cobalt(II) complex.  相似文献   

12.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

13.
Bis (difluoroboron - α - furilglyoximato) nickel (II), C20H12O8N4B2F4Ni, was prepared by cyclization of its hydrogen-bonded precursor with BF3·OEt2. The compound crystallizes in the space group P21/c with a = 11.162(2), b = 5.569(2), c = 19.527(3) Å, β = 100.08(1)°, U = 1195.1(3) Å3, and Z = 2. The structure was refined to an R value of 0.033 using 2371 unique reflections collected with a CAD4-SDP diffractometer system. Unlike the corresponding planar macrocyclic as well as hydrogen-bonded dimethylglyoximates, the title compound neither dimerizes not exhibits columnar stacked structure. The 14-member macrocycle is planar except the B atoms, and no metal-metal interactions are observed in this compound. The complexation and cyclization reactions were investigated using spectral data. The structure is compared with other macrocyclic complexes.  相似文献   

14.
The crystal and molecular structures of ThCl4(depa)3 (1) (depa = N,N-diethylpropionamide) and Th(NCS)4(dmpa)4 (2) (dmpa = N,N-dimethylpropionamide) have been determined from three-dimensional X-ray diffraction data. The compounds crystallize in space group P21/n (1) and P21/a (2), with a = 18.107(5), b = 10.347(3), c = 17.867(5) Å, β = 108.5(1)°, Z = 4 (1) and a = 22.759(6), b = 13.763(4), c = 11.910(3) Å, β = 91.4(1)° and Z = 4 (2). Full matrix least-squares refinement of both structures gave for (1) with 3126 intensity data R = 0.046 and Rw 0.046 and for (2) with 3480 intensity data R = 0.050, Rw 0.054. The different steric constraints imposed by the ligand give rise to different coordination numbers. In (1) the coordination polyhedron about the seven co-ordinate thorium atom is a pentagonal bipyramid with two chlorine atoms in the axial positions, an unusual geometry for Th(IV) species. The average bonding distances are ThO = 2.340(9), ThCleq = 2.754(3) and ThClax = 2.692(3) Å.In (2) the less hindering dmpa ligand favours the presence of four of them in the metal coordination sphere in a distorted square antiprismatic coordination geometry. ThO and ThN average 2.37(1) and 2.49(2) Å respectively.  相似文献   

15.
The crystal and molecular structures of Th(oda)2(H2O)4·6H2O (1) and Na2[Th(oda)3]·2NaNO3 (2) (oda = oxydiacetate) have been determined from three-dimensional X-ray diffraction data and refined by least squares to R = 0.049 and Rw = 0.049 for 2265 independent reflections for (1) and to R = 0.024 and Rw = 0.023 for 2196 independent reflections for (2).Crystal parameters are as follows: (1), tetragonal, space group P41212, a = 10.335(2), c = 20.709(5) Å and Z = 4; (2), monoclinic, space group C2/c, a = 17.096(5), b = 9.451(2), c = 16.245(4) Å, β = 107.8(1) and Z = 4.In both compounds the thorium atom lies on a crystallographic two-fold axis. The co-ordination number for thorium in (1) is 10 (bicapped square antiprism geometry), the compound is monomeric, the two oda ligands are tridentate to the metal, and four water molecules complete the coordination sphere; in thorium (2) the coordination number is 9 (tricapped trigonal prism geometry) with three oda ligands tridentate to the metal, the [Th(oda)3]2? and NO3? anions are held together through the sodium ions which are coordinated both to the oda carboxylic oxygens and to the nitrate oxygens.The ThO coordination distances are: in (1) 2.411(8), 2.414(9) for the carboxylic oxygens, 2.479(10) and 2.486(8) for water molecules and 2.697(9) for the etheric oxygen and in (2) 2.384(3), 2.402(4) and 2.402(4) for the carboxylic oxygens, 2.559(5) and 2.562(4) Å for the etheric oxygens.  相似文献   

16.
《Inorganica chimica acta》1988,147(1):99-102
K2PtCl4 reacts with L-lysine and with D,L-diaminiopropionic acid (Dap) forming the neutral complexes [PtCl2(N,O-Lys)]·H20 (1) and [PtCl2(N,O-Dap)], (2) respectively.Compound 1 is monoclinic, space group P21 with a = 11.262(3), b = 11.041(2), c = 9.690(2) Å, β = 102.07(5)°, V = 1178(1) Å3 and Z = 4. Compound 2 is monoclinic, space group P21/n with a = 8.777(1), b = 10.615(2), c = 7.947(1) Å, β = 94.98(3)°, V = 738(1) Å3 and Z = 4. In both compounds, the zwitterionic ligands form an N,O-five membered chelate with the platinum atom. Structures 1 and 2 were refined to R values of 3.3% and 6.3% respectively.  相似文献   

17.
The base-catalyzed condensation reactions of formaldehyde with the copper(II) chelates of α-alanine and C-phenylglycine result in the formation of bis(4R-oxazolidine-4′-carboxylato)copper(II) where R = methyl and phenyl respectively. The 4-methyl complex, C10H20N2O8Cu, crystallizes in the monoclinic space group P21/n with a = 9.141(2), b = 7.335(3), c = 11.112(3) Å, β = 103.87(2)° and Z = 2. The structure has been refined to R = 0.026 and Rw = 0.031 based on 749 independent reflections collected, 651 used. The geometry about copper is essentially a (4 + 2)-elongated octahedral structure. The 4-phenyl derivative, C20H20N2O6Cu, crystallizes in the monoclinic space group P21/c with a = 11.939(4), b = 8.887(2), c = 8.611(3) Å, β = 95.61(3)° and Z = 2. Refinement of the structure converged to R = 0.062 and Rw = 0.071 based on 1003 reflections collected and 865 used. The structure of the 4-phenyl complex resembles that of the 4-methyl derivative and differs mainly from the latter in being anhydrous.  相似文献   

18.
The crystal and molecular structures of the ligand bpenH2 (N,N′-bis(2′-pyridinecarboxamide)-1,2-ethane) and its deprotonated dimeric cobalt(III) complex fac-[Co2(bpen)3]·12H2O have been determined by single-crystal X-ray diffraction methods. Crystal data: (a) bpenH2, C14H14N4O2, orthorhombic, space group Pccn, a=9.638(1), b= 15.288(1), c = 8.684(1) Å, Z=4; (b) Co2(bpen)3· 12H2O, C42H60N12O18Co2, triclinic, space group P1, a = 11.128(3), b = 14.316(5), c = 16.466(4) Å, α= 92.02(2)°, β = 95.21(2)°, γ = 99.30(2)°, Z = 2.The structures were refined to R 0.034 and 0.053 for 1064 and 7748 independent reflexions, respectively. The bpenH2 molecule has a space group imposed centre of symmetry, with the amide group adopting a trans configuration in the closely planar picolinamide moiety. The cobalt complex is dimeric in which three bpen ligands, acting each as a bis(N2-bidentate), bridge the two metal atoms. Each cobalt atom is octahedral with CoNpy 1.944(3) and Co Nam 1.933(3) Å. The Co··Co separation is 5.493(1) Å. The symmetry of the dimeric molecule is D3 which is consistent with that indicated from solution NMR studies.  相似文献   

19.
《Inorganica chimica acta》1988,149(2):177-185
CpRuCl(PPh3)2 reacted with excess R-DAB in refluxing toluene to give CpRuCl(R-DAB(4e)) (1a: R = i-Pr; 1b: R = t-Bu; 1c: R = neo-Pent; 1d: R =p-Tol). 1H NMR and 13C NMR spectroscopic data indicated that in these complexes the R-DAB ligand is bonded in a chelating 4e coordination mode.Reaction of 1a and 1b with one equivalent of [Co(CO)4] afforded CpRuCo(CO)3(R-DAB(6e)) (2a: R = i-Pr; 2b: R = t-Bu). The structure of 2b was determined by a single crystal X-ray structure determination. Crystals of 2b are monoclinic, space group P21/n, with four molecules in a unit cell of dimensions: a = 16.812(4), b = 12.233(3), c = 9.938(3) Å and β = 105.47(3)°. The structure was solved via the heavy atom method and refined to R = 0.060 and Rw = 0.065 for the 3706 observed reflections. The molecule contains a RuCo bond of 2.660(3) Å and a cyclopentadienyl group that is η5-coordinated to ruthenium [RuC(cyclopentadienyl) = 2.208(3) Å (mean)]. Two carbonyls are terminally coordinated to cobalt (CoC(1) = 1.746(7) and CoC(2) = 1.715(6) Å) while the third is slightly asymmetrically bridging the RuCo bond (RuC(3) = 2.025(6) and CoC(3) = 1.912(6) Å). The RuC(3)O(3) and CoC(3)O(3) angles are 138.4(5)° and 136.5(5)°, respectively. The t-Bu-DAB ligand is in the bridging 6e coordination mode: σ-N coordinated to Ru (RuN(2) = 2.125(4) Å), μ2-N′ bridging the RuCo bond and η2-CN coordinated to Co (RuN(1) = 2.113(5), CoN(1) = 1.941(4) and CoC(4) = 2.084(5) Å). The η2-CN′ bonded imine group has a bond length of 1.394(7) Å indicating substantial π-backbonding from Co into the anti-bonding orbital of this CN bond.1H NMR spectroscopy indicated that 2a and 2b are fluxional on the NMR time scale. The fluxionality of 6e bonded R-DAB ligands is rarely observed and may be explained by the reversible interchange of the σ-N and η2-CN′ coordinated imine parts of the R-DAB ligand.  相似文献   

20.
Two zinc complexes—trichloroadeninium zinc(II)(Form 11), C5H6N5Cl3Zn [structure(I)] and a similar complex of Arprinocid, (6-amino-9-(2-chloro-6-fluorobenzyl)purine], C12H10N5FCl4Zn [structure(II)]—have been prepared Structure(I) crystallizes in the space group P21/c with a = 8.223(1)Å, b = 6.755(1) Å, c = 18.698(3) Å, β = 96.10(2)°,and Z = 4. Structure(II) crystallizes in the space group P21/c with a = 8.209(2) Å, b = 6.421(8) Å, c = 31.794(8) Å, β = 90.76(2)°, and Z = 4. Both of these structures were solved by the heavy atom method using diffractometric data and refined to R = 0.028 [structure(I)] and 0.038 [structure(II)]. Zinc with a distorted tetrahedral coordination having three chlorines and N(7) as ligators, protonation of the adenine moiety at N(1), dissymmetry of exocyclic angles at N(7), and an interligand hydrogen bond (“indirect chelation”) involving one of the three chlorines, coordinated to zinc and a proton of the exocylic amino group are the striking features common to both structures. Similar types of indirect chelation as observed in the different complexes of purines have been discussed. The zinc ion deviates from the imidazole plane by 0.412 Å in structure(I) and 0.524 Å in Structure(II). The imidazol and pyrimidine planes fold about the C(4)-C(5) bond by 2.4° in strctur(I) and 3.8° in structure(II). In structure(I), inversion related molecules are paired through N(9)-H…N(3) hydrogen bonds. N-H…Cl hydrogen bonds and C(8)-H…Cl interactions have been observed in both structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号