首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability constants for the 1:1 complexes of dibenzo-30-crown-10 (DB30C10) with alkali metal ions have been determined at 25 °C in nitromethane and water by conductometry and capillary electrophoresis, respectively. Transfer activity coefficients of DB30C10 and its complexes from nitromethane to S (S = water, acetonitrile, propylene carbonate, methanol, and N,N-dimethylformamide) have been determined at 25 °C to evaluate the solvation properties. The stability constant in the poorly solvating solvent, nitromethane, decreases with increasing metal ion size, Na+ > K+ > Rb+ > Cs+, reflecting the intrinsic selectivity governed by electrostatic interaction between the metal ion and the ether oxygen atoms. It is also suggested that a part of the ether oxygen atoms does not bind to the metal ion in the Na(DB30C10)+ complex. The aqueous stability constant varies as Na+ ? K+ ≈ Rb+ ≈ Cs+; this selectivity pattern is similar to that in acetonitrile, propylene carbonate, and methanol. The complex stability in water is very low compared to that in the nonaqueous solvents, owing to hydrogen bonding of water to the oxygen atoms of the free crown ether. The transfer activity coefficient values show that DB30C10 shields all the metal ions effectively from the solvents and lead to the conclusion that the complexation selectivity in S receives a significant contribution from the solvation of the free metal ions. The Na(DB30C10)+ complex has specific interaction with water, causing much lower K+/Na+ selectivity in H2O than in MeOH.  相似文献   

2.
Stability constants for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-18-crown-6 (DB18C6) and dibenzo-24-crown-8 (DB24C8) have been determined by conductometry at 25 °C in a poorly solvating solvent, nitromethane. For both the crown ethers, the stability constant decreases with increasing metal ion size, Na+ > K+ > Rb+ > Cs+, regardless of the size compatibility between the metal ions and the ligand cavities. A comparison of the results with those in several other solvents (S: acetonitrile, propylene carbonate, water, methanol, and N,N-dimethylformamide) leads to the conclusion that the selectivity sequence of these crown ethers in nitromethane agrees with the intrinsic one in the absence of a solvent. Transfer activity coefficients of the crown ethers and their complexes from nitromethane to S have been determined to evaluate the solute-solvent interactions. It is shown that DB24C8 shields the alkali metal ions more effectively from the solvents than DB18C6 because of the larger number of oxygen atoms and the more flexible structure of DB24C8. Regarding the complexation in nitromethane as a reference, the complex stability and selectivity in S are discussed. The selectivities of these crown ethers in water, methanol, and N,N-dimethylformamide, which apparently obey the size-fit concept, are largely due to the solvation of the free alkali metal ions.  相似文献   

3.
The electron transfer properties of supramolecular complexes of 15-crown-5 (15C5) with protonated adrenaline (PAd+) at different electrodes using cyclic voltammetry (CV) have been investigated in the article. The experimental results show that 15C5 will affect the electron transfer properties of adrenaline. The formed supramolecular complexes by ion-dipole and hydrogen bond interaction between PAd+ and 15C5 will slow down the diffusion ability of adrenaline and make it hard to donate electron and be oxidized.The interaction energies and NPA calculations for the supramolecular complexes of 15C5 with PAd+ at B3LYP/6-31+G(d) level have been performed. The calculational results confirm the experimental fact that 15C5 can form stable supramolecular complexes with PAd+.  相似文献   

4.
Biochemical and kinetic characteristics of the Na+-K+ exchange were studied in Paracentrotus lividus eggs. Measurement of the 86Rb uptake shows that ouabain-sensitive 86Rb uptake is dramatically stimulated within the first minute following fertilization. The Na+-K+ pump-mediated K+ entry presents a maximal rate at 8 min postfertilization and then decreases to reach a plateau within 30 min. We assess that the steep rise in cell K+ occurring at fertilization (J.P. Girard, P. Payan, C. Sardet, Exp. Cell. Res. 142:215–221, 1982) does not originate from a net entry of external K+. Measured 30 min postfertilization, the half-maximal activation by K+ of the ouabain-sensitive Na+-K+ exchange is 5–6 mM and the ouabain lC50 is 5.10?5 M. Egg cortices from unfertilized and fertilized eggs show comparable Na+-K+ ATPase activity with a 50% ouabain-sensitive fraction. Vm and Km for Na+ and K+ of the enzyme are of the same order of magnitude in cortices of unfertilized and fertilized eggs. Cortical Na+-K+ ATPase from unfertilized eggs shows a ten fold increase of activity between pH 6.7 and pH 7.7. The results strongly suggest that the plasma membrane of unfertilized eggs contains a preexisting Na+-K+ transporting system which is obligatorily stimulated at fertilization.  相似文献   

5.
《Inorganica chimica acta》1988,149(1):151-154
The extraction equilibrium of the hydronium-uranium(VI)-dicyclohexano-24-crown-8 complex was carried out in the crown ether1,2-dichloroethaneHCl aqueous solution system at different temperatures. The extraction complex has the overall composition (L)2·(H3O+·χH2O)2·UO2Cl42− (L = dicyclohexano-24-crown-8). The values of the extraction equilibrium constants (Kex) increase steadily with a decrease in temperature: 13.5 (298 K), 7.96 (301 K), 4.20 (303 K) and 2.07 (305 K). A plot of log Kex against 1/T shows a straight line. The value of the enthalpy change, ΔH°, was calculated from the slope and equals −212 kJ mol−1. The value of the entropy change, ΔS°, was calculated from ΔH° and Kex and equals −690 J K−1 mol−1, whereas ΔG° = −6.45 kJ mol−1. Comparing these thermodynamic parameters with those of the dicyclohexano-18-crown-6 isomer A [1] (ΔS° = −314 J K−1 mol−1, ΔH° = −101 kJ mol−1 and ΔG° = −8.37 kJ mol−1), it can be seen that ΔH° and ΔS° are more negative for the former than for the latter, and both are enthalpy-stabilized complexes. The molecular structure of the complex has the feature that there are two H5O2+ ions in it, in contrast to the H3O+ ions in the dicyclohexano-18-crown-6 isomer A complex [1]. Each of the H5O2+ ions is held in the crown ether cavity by four hydrogen bonds. The H5O2+ ion has a central bond. The uranium atom forms UO2Cl42− as a counterion away from the crown ether. The formation of this complex is in good agreement with more negative entropy change and less negative free energy change, as mentioned above.  相似文献   

6.
Theoretical studies of an unsymmetrical calix[4]-crown-5-N-azacrown-5 (1) in a fixed 1,3-alternate conformation and the complexes 1·K+(a), 1·K+(b), 1·K+(c) and 1·K+K+ were performed using density functional theory (DFT) at the B3LYP/6-31G* level. The fully optimized geometric structures of the free macroligand and its 1:1 and 1:2 complexes, as obtained from DFT calculations, were used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions were investigated. NBO analysis indicated that the stabilization interaction energies (E 2) for O…K+ and N…K+ are larger than the other intermolecular interactions in each complex. The significant increase in electron density in the RY* or LP* orbitals of K+ results in strong host–guest interactions. In addition, the intermolecular interaction thermal energies (ΔE, ΔH, ΔG) were calculated by frequency analysis at the B3LYP/6-31G* level. For all structures, the most pronounced changes in the geometric parameters upon interaction are observed in the calix[4]arene molecule. The results indicate that both the intermolecular electrostatic interactions and the cation–π interactions between the metal ion and π orbitals of the two pairs that face the inverted benzene rings play a significant role.  相似文献   

7.
The aim of this work was to investigate the influence of [PdCl4]2 ? , [PdCl(dien)]+ and [PdCl(Me4dien)]+ complexes on Na+/K+-ATPase activity. The dose-dependent inhibition curves were obtained in all cases. IC50 values determined by Hill analysis were 2.25 × 10? 5 M, 1.21 × 10? 4 M and 2.36 × 10? 4 M, respectively. Na+/K+-ATPase exhibited typical Michelis-Menten kinetics in the presence of Pd(II) complexes. Kinetic parameters (Vmax, Km) derived using Eadie–Hofstee transformation indicated a noncompetitive type of Na+/K+-ATPase inhibition. The inhibitor constants (Ki) were determined from Dixon plots. The order of complex affinity for binding with Na+/K+-ATPase, deducted from Ki values, was [PdCl4]2 ? >[PdCl(dien)]+>[PdCl(Me4dien)]+. The results indicated that the potency of Pd(II) complexes to inhibit Na+/K+-ATPase activity depended strongly on ligands of the related compound. Furthermore, the ability of SH-donor ligands, l-cysteine and glutathione, to prevent and recover the Pd(II) complexes-induced inhibition of Na+/K+-ATPase was examined. The addition of 1 mM l-cysteine or glutathione to the reaction mixture before exposure to Pd(II) complexes prevented the inhibition by increasing the IC50 values by one order of magnitude. Moreover, the inhibited enzymatic activity was recovered by addition of SH-donor ligands in a concentration-dependent manner.  相似文献   

8.
Abstract

The protonation constants of maleic acid and L-asparagine have been studied pH-metrically in various concentrations (0–50% v/v) of acetonitrile–water mixtures maintaining an ionic strength of 0.16 mol L-1 at 300C. The protonation constants have been calculated using the computer program MINIQUAD75 and are selected based on statistical parameters. Linear variation of step-wise protonation constants (log K) with the reciprocal of the dielectric constant of the solvent mixture has been attributed to the dominance of the electrostatic forces.  相似文献   

9.
The coordination sphere and the deexcitation mechanism of the Eu(III) benzo-15-crown-5 complex, Eu(B15C5), were studied with references of the Eu(III) complexes with a similar coordination sphere; the dibenzo-18-crown-6 complex, Eu3(B218C6)2, and the cryptand[2.2.1] complex, Eu([2.2.1]). NMR spectroscopy reveals that the Eu(B15C5) complex is quite stable in acetonitrile solution whereas only 40% of the Eu(III) ion forms the complex in the equimolar Eu(NO3)3 and B218C6 acetonitrile solution. The coordination sphere of the Eu(III) complexes in acetonitrile solutions were also discussed by the degenerate 7F05D0 transition energy levels. The Eu(B15C5) have a negative shift compared with the europium(III) nitrate in acetonitrile and it is explained by the coordination of both nitrate ions and the crown ether ligand. Energy transfer from the n–π* excited state located in the catechol structure to the central europium ion was first observed as the sensitized luminescence of 5D07FJ. The excited state lifetime of the Eu(B15C5) complex was first determined as 201 μs in the present study.  相似文献   

10.
Microstructure of dibenzo-18-crown-6 (DB18C6) and DB18C6/Li+ complex in different solvents (water, methanol, chloroform, and nitrobenzene) have been analyzed using radial distribution function (RDF), coordination number (CN), and orientation profiles, in order to identify the role of solvents on complexation of DB18C6 with Li+, using molecular dynamics (MD) simulations. In contrast to aqueous solution of LiCl, no clear solvation pattern is found around Li+ in the presence of DB18C6. The effect of DB18C6 has been visualized in terms of reduction in peak height and shift in peak positions of gLi-Ow. The appearance of damped oscillations in velocity autocorrelation function (VACF) of complexed Li+ described the high frequency motion to a “rattling” of the ion in the cage of DB18C6. The solvent-complex interaction is found to be higher for water and methanol due to hydrogen bond (HB) interactions with DB18C6. However, the stability of DB18C6/Li+ complex is found to be almost similar for each solvent due to weak complex-solvent interactions. Further, Li+ complex of DB18C6 at the liquid/liquid interface of two immiscible solvents confirm the high interfacial activity of DB18C6 and DB18C6/Li+ complex. The complexed Li+ shows higher affinity for water than organic solvents; still they remain at the interface rather than migrating toward water due to higher surface tension of water as compared to organic solvents. These simulation results shed light on the role of counter-ions and spatial orientation of species in pure and hybrid solvents in the complexation of DB18C6 with Li+. Graphical Abstract
DB18C6/Li+ complex in pure solvents (water, methanol, chloroform, and nitrobenzene) and water/nitrobenzene interface  相似文献   

11.
Substituted η3-butadienyl complexes containing amide-armed crowns (X) of general formula [MoCl(CO)23-CH2C(COX)CCH2)(phen)]n (phen=1,10-phenanthroline) were prepared and investigated for their ability to extract alkali metal ions from a mixed phase system. Reaction of the chlorocarbonyl precursor (1) with 1-aza-15-crown-5, 4-aminobenzo-15-crown-5, 2-aminomethyl-15-crown-5, 4-aminobenzo-18-crown-6 or 2-aminomethyl-18-crown-6 gave monomeric complexes (n=1), and addition of sodium tetraphenylboron to the 15-crown-5-substituted complexes gave the corresponding sodium salts. Dinuclear complexes (n=2) were formed by reaction of 1 and 1,7-diaza-15-crown-5 or 4,4(5)-diaminobenzo-15-crown-5. Comparison of amidobenzo- and 2-amidomethyl-15-crown-5-substituted complexes showed enhanced sodium transport properties for the latter, and spectroscopic and molecular modeling studies suggested complexation occurred by concerted action of the amide and crown.  相似文献   

12.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

13.
Stability constants and dissociation rate constants of a range of thallium(I) cryptates in acetonitrile and of the cryptate Tl(2,2,2)+ in water-acetonitrile mixtures have been measured at 25°C. Solvation free energies of transfer for Tl+ from water to acetonitrile and to water-acetonitrile mixtures have been estimated from polarographic measurements using the ferrocene assumption. The results allow the calculation of transfer free energy data for the stable cryptate, TlCry+, and for the transition state (Tl+…Cry).In mixtures of water and acetonitrile the stability constant of Tl(2,2,2)+ increases substantially with increasing acetonitrile content. This variation arises almost equally from an increase in the formation rate constant and a decrease in dissociation rate constant. Alternatively, the increase of stability constants for Tl(2,2,2)+ with increasing mole fraction of acetonitrile results from a strongly decreasing transfer free energy of the cryptate which surpasses in magnitude the increasing transfer free energies of the reactants.  相似文献   

14.
Stability constants of sodium and potassium complexes of valinomycin in some alcohols and water—organic solvent mixtures have been determined by titration, using circular dichroism to monitor complex formation. Constants range from 101 to 106 M−1. Stability of the potassium and sodium complexes increases with decreasing dielectric constant, but the ratio of the constants remains about 103–104. As others have shown, a similar selectivity for K+ is observed in a number of other types of measurements involving valinomycin. These include the permeability and conductance ratios which characterize the selectivity of cation transport through membranes and the ratio of salt extraction equilibrium constants. On the basis of data presented here, and elsewhere, it is suggested that conformational constraints within the depsipeptide part of the complexes aid ion selectivity and that differences in cation solvation and carbonyl ligand binding energies make an important, roughly equal, contribution.  相似文献   

15.
The distributions of lithium cation, picrate anion and dibenzo-14-crown-4 (DB14C4) and its analogs between water and various solvents, as well as the formation of ion pairs of lithium picrate and crown in these solvents, were studied spectrophotometrically at 24 ± 1 °C. The solvents used included benzene, chloroform, dichloromethane, 1,2-dichloroethane, nitromethane, and nitrobenzene. A 1:1 complex cation was formed between Li+ and crown among these solvents. Three different kinds of ion pairs of Li+-crown complex cation and picrate anion could be determined from a series of absorption maximum shifts. The effects of substituent groups on DB14C4 and solvents upon the extraction constant are presented. A plausible extraction mechanism is also suggested.  相似文献   

16.
The lanthanoid trifluoroacetates, Ln(TFA)3, react with 12-crown-4, 15-crown-5, and 18-crown-6 ethers to give complexes with various metal:ligand ratios, 1:1, 3:2, and 2:1. The following complexes have been isolated and characterized: Ln(CF3CO2)3· (C8He16O4), Ln = La, Ce, Pr; [Ln(CF3CO2)3]3· (C8H16O4)2, Ln = Pr, Eu, Er; [Ln(CF3CO2)3]2· (C8H16O4), Ln = Pr, Nd, Sm; [Ln(CF3CO2)3]2· (C10H20O5), Ln = La---Eu; Ln(CF3CO2)3·(C12H24O6), Ln = La---Eu; [Ln(CF3CO2)3]2·(C12H24O6), Ln = Y, Eu---Er, Yb. Thermogravimetric data show that the 2:1 complexes are usually thermally more stable. The 2:1 complexes with the 15-membered polyether undergo a slow hydrolysis in the presence of traces of water, which yields the hydroxo complex [Ln2(CF3CO2)3(OH)(C10H20O5)2] [Ln2(CF3CO2)8]. The vibrational spectra confirm the coordination of the coronands; the Δνas(CCO) shifts are not large, which point to a moderate interaction between the polyethers and the metal ions. Magnetic susceptibilities and X-ray powder diagrams have been measured.High-resolution excitation and emission spectra have been analysed for the europium-containing compounds. The spectrum of Eu(CF3CO2)3·3H2O indicates the presence of a single species with low symmetry, in agreement with the crystal structure data for the isostructural Pr-salt. The anhydrous salt Eu(CF3CO2)3 generates an emission spectrum with broad bands and probably contains several, closely related polymeric species. The spectrum of [Eu(CF3CO2)3]2(C10H20O5) is consistent with the presence of two chemically different sites for Eu(III); the emission bands are broad. The double salt AgEu(CF3CO2)4·3CH3CN has also been investigated; the observed transitions point to the presence of a species with idealized D2d symmetry. The emission spectrum of [Eu(CF3CO2)3]2(C12H24O6) displays sharp bands and reveals the presence of two different sites for the metal ion with efficient energy transfers between them. One of the species may have a relatively high symmetry.In solution, all the complexes are non-electrolytes in acetonitrile and propylene carbonate and close to 1:1 electrolytes in methanol. Some dissociation occurs in acetonitrile for the 2:1 complexes with 18-crown-6 ether. On the other hand, 1H NMR spectra of the lanthanum 1:1 complexes with 12- crown-4 and 18-crown-6 ethers indicate no dissociation of the complexed polyether. Log β1 is greater than 6 for both complexes; it is equal to 4.4 for the samarium 1:1 complex with 18-crown-6 ether.  相似文献   

17.
Anaerobically grown and glycolysing Escherichia coli produced H2 and carried out H+-K+-exchange in two steps, the first of which had the fixed stoichiometry for DCCD-sensitive fluxes (2H+/K+), and the second one had a variable stoichiometry for DCCD-sensitive fluxes. H2 production and the 2H+/K+-exchange were lost in the ΔfdhF or ΔhycA-H mutant. In the ΔfdhF mutant, H+-K+-exchange with K m for K+-uptake of 2.3 mM and less K+-gradient between the cytoplasm and the medium were observed. H2 production and H+-K+-exchange with a high K m for K+-uptake were carried out in the uncD mutant; however, both H2 production and H+-K+-exchange were lost in the Δunc or uncE mutant. H2 production was observed in the trkA trkD kdpA mutant. It was displayed in protoplasts with increased membrane permeability when donor or acceptor of reducing equivalents—formate with DTT or NADH respectively—was added. The F0F1 and the TrkA(H) or the F0 and the TrkA(G) had been assumed to form the united supercomplexes, functioning as a H+-K+-pump or antiporter respectively (for review see Bioelectrochem Bioenerg 33:1, 1994). Results allow the proposal that H2 production by FHL has a relationship with the H+-K+-exchange through a H+-K+-pump and via an H+-K+-antiporter. Formate and NADH can serve as a donor and an acceptor of reducing equivalent respectively, for operation of such supercomplexes. Received: 12 December 1996 / Accepted: 19 March 1997  相似文献   

18.
The solvent extraction properties of macrocyclic trinuclear organometallic complexes, [(p-cymene)Ru(pyO2)]3 and [CpRh(pyO2)]3, for Li+, Na+, and K+ picrates have been investigated in a dichloromethane-water system at 25 °C. The extraction rates of the alkali metal picrates with these macrocyclic complex ligands are unusually slow; the shaking times required to attain equilibrium are at least 1 h for [(p-cymene)Ru(pyO2)]3 and 20-40 h for [CpRh(pyO2)]3. From analysis of the equilibrium data, the extraction constants (Kex = [ML+A]o/[M+][L]o[A]; M+ = alkali metal ion, L = macrocyclic ligand, A = picrate ion, o = organic phase) have been determined. The log Kex value varies in the sequences, Li+ (5.72) > Na+ (4.50) > K+ (2.88) for [(p-cymene)Ru(pyO2)]3 and Li+ (4.79) > Na+ (2.70) ≈ K+ (2.69) for [CpRh(pyO2)]3. The Kex values of 6,6-dibenzyl-14-crown-4 (DBz14C4), which is one of the best Li+-selective crown ethers, have also been determined for comparison. It is revealed that [CpRh(pyO2)]3 is much superior to DBz14C4 both in the extractability for Li+ and the selectivity for Li+ over Na+.  相似文献   

19.
This report describes K+ efflux, K+ and Ca2+ uptake responses to endothelins (ET-1 and ET-3) in cultured endothelium derived from capillaries of human brain (HBEC). ET-1 dose dependently increased K+ efflux, K+ and Ca2+ uptake in these cells. ET-1 stimulated K+ efflux occurred prior to that of K+ uptake. ET-3 was ineffective. The main contributor to the ET-1 induced K+ uptake was ouabain but not bumetanide-sensitive (Na+-K+-ATPase and Na+-K+-Cl cotransport activity, respectively). All tested paradigms of ET-1 effects in HBEC were inhibited by selective antagonist of ETA but not ETB receptors and inhibitors of phospholipase C and receptor-operated Ca2+ channels. Activation of protein kinase C (PKC) decreased whereas inhibition of PKC increased the ET-1 stimulated K+ efflux, K+ and Ca2+ uptake in HBEC. The results indicate that ET-1 affects the HBEC ionic transport systems through activation of ETA receptors linked to PLC and modulated by intracellular Ca2+ mobilization and PKC.  相似文献   

20.
Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4 was investigated in relation to conformation. In an alcohol solution, cyclo(Phe-Pro)4 did not form complexes. However, cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 formed complexes selectively with Ba2+ and Ca2+ ions. Changing the solvent from alcohol to acetonitrile, the complexation behavior was very different. In acetonitrile, cyclo(Phe-Pro)4 was found to form a complex with Ba2+, and CD spectra of cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 changed sharply on complexation with K+. Rate constants of the complex formation between the cyclic octapeptides and metal salts were in the range of 0.7–12 L mol?1 min?1 in an alcohol solution. One of the two types of complex formation in acetonitrile was much faster than that in an alcohol solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号