首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Inorganica chimica acta》1988,141(1):131-138
A variety of novel gaseous polyatomic binary and ternary oxides were observed at ambient temperature arising from lanthanide (Ln) nitrate Schiff base complexes, simple salts and sesquioxides, in an FAB mass spectrometer. The new binary oxides (as singly positive ions) detected are Ln2O3, Ln3O3, Ln3O4, Ln4O4, Ln4O5, Ln4O6, Ln5O6, Ln5O7, Ln5O8, Ln6O8, Ln6O9, Ln7O10, Ln8O11, Ln8O12 and Ln9O13; the ternary gaseous oxides are CeEuO2, CeEu2O3 and Ce2EuO4, LaYbO2, La2YbO4 and LaYb2O4; NdHoO3, Nd2HoO4, and NdHo2O4; YTmO3; YxTm3−xO4, x=1−2; YxTm4−xO6, x=1−3; YxTm5−xO7, x=1−4; YxTm6−xO9, x=1−5. Some of these oxides show the lanthanide cations in unusual oxidation states. Gadolinium-gallium ternary oxides, GdGaO2, GdGaO3 and Gd2GaO4 were also detected. The FAB MS environment is significantly reducing, yielding a homologous series EunOn where Eu2+ is dominant (E°(Eu3+/Eu2+)=−0.35 V) and no gallium or indium oxides (E°(M3+/M°=−0.34 V (In), −0.53 V (Ga)) were formed. The stoichiometry of the polylanthanide ternary oxides formed is determined largely by the chemistry of the major metallic component. The gaseous polyatomic oxides are probably formed through a reductive condensation process involving primary species Ln+ and LnO+ formed when the rare earth compounds are struck by fast Xe atoms. The demonstrated possibility of double component oxide formation broadens the number and types of gaseous lanthanide oxides which are accessible.  相似文献   

2.
《Inorganica chimica acta》1988,148(2):265-272
The magnetic and luminescence characteristics of trimorphic homodinuclear macrocyclic complexes of lanthanides and a 2:2 phenolate Schiff's base L, derived from 2,6-diformyl-p-cresol and triethylenetetramine were determined. The complexes of Pr3+ exhibit non-Curie-Weiss temperature dependent magnetic susceptibilities for which satisfactory fits to an axial relationship depends on crystal field splitting and a weak binuclear Pr3+Pr3+ antiferromagnetic interaction. The exchange interaction parameters are zJ′ = −2.2, −4.4 and −7.0 cm −1 for ‘off-white’ Pr2L(NO3)4·2H2O, ‘yellow’ Pr2L(NO3)4, and ‘orange’ Pr2L(NO3)2(OH)2, respectively. In contrast, magnetic susceptibilities of the Ln2L(NO3)3(OH) complexes (Ln = Dy, Ho) follow Curie-Weiss behavior over the entire temperature range (6 K to 300 K). The complexes of closed shell ions La3+, Lu3+, Y3+ and those of the half filled shell ion Gd3+ exhibit a strong ligand fluorescence in the 450 nm to 650 nm range with decay times at 77 K of 5–8 ns for Ln≠Gd or 2–4 ns for Ln = Gd. The complexes of Gd3+ also exhibit a phosphorescence at 600 nm (decay time ∼ 200 μs). The complexes containing Ce3+, Eu3+, Tb3+ and Er3+ show very weak ligand luminescence indicative of effective quenching processes. Sensitized emission from the lanthanide ion is observed only with the Eu3+ complexes (5Do7Fj transitions). The emission lifetimes are on the order of 250 μs in the pure Eu3+ complexes. The emission decay curves from dilute samples of Eu3+ in ‘off-white’ La2L(NO3)4nH2O show a noticeable rise time as well as a biphasic decay (fast component ∼ 400 μs; slow component ∼ 2500 μs). The luminescing states of L and Eu3+ have a common excitation spectrum which is similar to the electronic absorption spectrum of L indicating that ligand-to-metal ion energy transfer processes are dominant. Overall the result if this study suggest that the spectral properties of the complexes are determined by the coordination mode of the lanthanide ions to the Schiff base portion of macrocyclic ligand.  相似文献   

3.
In this paper, we report the synthesis and the characterization of a novel series of lanthanide (III) complexes with two potentially hexadentate ligands.The ligands contain a rigid phenanthroline moiety and two flexible hydrazonic arms with different donor atom sets (NNN′N′OO and NNN′N′N″N″, respectively for H2L1 (2,9-diformylphenanthroline)bis(benzoyl)hydrazone and H2L2 (2,9-diformylphenanthroline)bis(2-pyridyl)hydrazone).Both nitrate and acetate complexes of H2L1 with La, Eu, Gd, and Tb were prepared and fully characterized, and the X-ray crystal structure of the complex [Eu(HL1)(CH3 COO)2] · 5H2O is presented.The stability constants of the equilibria Ln3+ + H2L1 = [Ln(H2L1)]3+ and Ln3+ + (L1)2− = [Ln(L1)]+ (Ln = La(III), Eu(III), Gd(III), and Tb(III)) are determined by UV spectrophotometric titrations in DMSO at t = 25 °C. The nitrate complexes of H2L2 with La, Eu, Gd and Tb were also synthesized, and the X-ray crystal structures of [La(H2L2)(NO3)2(H2O)](NO3), [Eu(H2L2)(NO3)2](NO3) and [Tb(H2 L2)(NO3)2](NO3) are discussed.  相似文献   

4.
The enantiomers of the Sm (III), Eu (III) and Yb (III) complexes [LnL(NO3)2](NO3) of a chiral hexaazamacrocycle were tested as catalysts for the hydrolytic cleavage of supercoiled plasmid DNA. The catalytic activity was remarkably enantioselective; while the [LnLSSSS(NO3)2](NO3) enantiomers promoted the cleavage of plasmid pBR322 from the supercoiled form (SC) to the nicked form (NC), the [LnLRRRR(NO3)2](NO3) enantiomers were inactive. Kinetics of plasmid DNA hydrolysis was also investigated by agarose electrophoresis and it indicated typical single-exponential cleavage reaction. The hydrolytic mechanism of DNA cleavage was confirmed by the successful ligation of hydrolysis product by T4 ligase. The NMR study of the solutions of the complexes in various buffers indicated that the complexes exist as monomeric cationic complexes [LnL(H2O)3]3 + in slightly acidic solutions and as dimeric cationic complexes [Ln2L2(μ-OH)2(H2O)2]4 + in slightly basic 8 mM solutions, with the latter form being a possible catalyst for hydrolysis of phosphodiester bonds.  相似文献   

5.
The new enantiopure complexes [LnL](NO3)3 · nH2O (Ln = Dy+3, Ho+3, Er+3, Lu+3) and [LnL]Cl3 · nH2O (Ln = Nd+3, Sm+3, Gd+3, Tb+3, Dy+3, Ho+3, Er+3, Tm+3, Lu+3) of the chiral macrocycle L derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformylpyridine have been synthesised. The preference of macrocycle L for the heavier lanthanide(III) ions has been established on the basis of competition reaction. The complexes have been characterised by NMR spectroscopy and mass spectrometry. 1H NMR signals of deuterated water solutions of the Ce+3, Nd+3 and Eu+3 complexes have been assigned on the basis of the COSY and HMQC spectra, and for the remaining lanthanide complexes the signals were assigned on the basis of linewidths analysis. The paramagnetic shifts of the series of lanthanide complexes [LnL](NO3)3 · nH2O and [LnL]Cl3 · nH2O have been analysed using both crystal-field dependent and independent methods in order to separate contact and dipolar contributions and establish isostructurality along the series of lanthanide complexes in solution. The data obtained for nitrate derivatives in organic solvent indicate rather irregular deviations from the plots based on those methods, while the plots obtained for water solutions show the characteristic brake in the middle of the lanthanide series, that is interpreted as a result of change of the number of axially coordinated water molecules. The apparent inconsistencies of results obtained on the basis of crystal-field independent method are discussed.  相似文献   

6.
Uranyl(VI) and thorium(IV) complexes of the type UO2(NO3)2(L1)2, UO2(NO3)2(L2)2, UO2(CH3COO)2L1, UO2(CH3COO)2L2, Th(NO3)4(L1)2 and Th(NO3)4(L2)2 (L1 = (2-nitro)phenyl-bis-phenyl phosphine oxide, L2 = triferrocenylphosphine oxide) are reported, together with their physico-chemical properties.The crystal structure of UO2(NO3)2(L1)2 is also reported. The crystals are monoclinic, space group P21/n with a = 17.78(1), b = 13.88(1), c = 17.37(1) Å, β = 114.8(1)° for Z = 4. The uranium atom is 8-coordinated, the uranyl(VI) group being equatorially surrounded by an irregular hexagon of six oxygen atoms from two trans neutral ligands and two nitrato groups.  相似文献   

7.
Some new dimethoxyethane (DME) adducts of lanthanide trichlorides of formula [LnCl3(DME)2]n, n=1 or 2; (n=2, Ln=La, Ce, Pr, Nd; n=1, Ln=Eu, Tb, Ho, Tm, Lu) have been prepared by treating Ln2O3, or LnCl3 · nH2O, or Ln2(CO3)3, in DME as medium, with thionyl chloride at room temperature, eventually in the presence of water in the case of Ln2O3 and Ln2(CO3)3. The complexes from lanthanum to praseodymium included are chloro-bridged dimers. In the case of neodymium, the new results complement the literature data, showing that both the mononuclear and dinuclear species exist: neodymium can therefore be regarded as the turning element from dinuclear to mononuclear structures along the series. Only mononuclear complexes were isolated in the Eu-Lu sequence. The lanthanide contraction has been evaluated on the basis of the Ln-O and Ln-Cl bond distances on the isotypical series of the mononuclear complexes LnCl3(DME)2 covering a range of 12 atomic numbers.  相似文献   

8.
The mononuclear macrocyclic lanthanide(III) complexes, [Ln(H2L)(H2O)4]Cl3 (Ln = Y, La, Ce, Cu, Tb, Yb, Lu; H2L = H2LA, H2LB, H2LC) were prepared by condensation 3,3′-(3,6-dioxaoctane-1,8-diyldioxy)bis(2-hydroxybenzaldehyde) or 3,3′-(3-oxapentane-1,5-diyldioxy)bis(2-hydroxybenzaldehyde) with 1,5-diamino-3-azamethylpentane or 1,7-diamino-3-azamethylheptane in the presence of LnCl3 · nH2O as templating agent. The asymmetric [1+1] ligands H2LA, H2LB and H2LC contain one smaller or larger N3O2 Schiff base site and one crown-ether like O2O4 or O2O3 site. The preference of the lanthanide ion to reside into the Schiff base or the crown-ether like chamber was investigated in the solid state and in methanol or dimethylsulfoxide solution. It was found that in the solid state or in methanol the lanthanide(III) ion coordinates into the O2On site while in dimethylsulfoxide demetalation and partial metal ion migration from the O2On into the N3O2 chamber occur. The mononuclear lanthanide(III) complexes [Ln(H2L)(H2O)4]Cl3 with the Ln3+ ion in the O2On site have been used as ligands in the synthesis of the heterodinuclear complexes LnLn′(L)(Cl)4 · 4H2O by reaction with the appropriate Ln′(III) chloride in methanol and in the presence of base. The related homodinuclear complexes Ln2(L)(Cl)4 · 4H2O have been prepared by the one-pot condensation of the appropriate precursors in the presence of base and of the lanthanide(III) ion as templating agent.The single-crystal X-ray structure of [Eu(H2LA)(H2O)4]Cl3 · 5H2O has been determined. The europium ion is nine-coordinated in the O2O3 ligand site and bonded to four water molecules and the coordination polyhedron can be described as a square monocapped antiprism.The site occupancy of the different lanthanide(III) ions and the physico-chemical properties arising from the different dinuclear aggregation and/or from the variation of the crown-ether shape have been investigated by IR and NMR spectroscopy, MS spectrometry and SEM-EDS microscopy. In particular, site migration and/or transmetalation reactions, together with demetalation reactions, have been monitored by NMR studies in methanol and dimethylsulfoxide. It was found that these processes strongly depend on the shape of the two coordination chambers, the solvent used and the radius of the lanthanide(III) ions. Thus, these molecular movements can be tuned by changing appropriately these parameters.  相似文献   

9.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

10.
The solution structures of the lanthanide complexes, [Ln(L)(NO3)3] and [Ln(L)2(NO3)3], where L = bis(diphenylphosphorylmethyl)mesitylene and Ln = La, Ce, Nd, Er, were investigated by 31P NMR and IR spectroscopy, conductivity and sedimentation analysis. Variable-temperature 31P{1H} NMR spectroscopy was used to identify species present in solution and to monitor their interconversions. The results indicate that equilibrium between molecular complexes [Ln(L)n(NO3)3]0 and cationic species (as ion pairs [Ln(L)n(NO3)2]+ · (NO3) and as free ions [Ln(L)n(NO3)2]+, throughout n = 1, 2) in solutions can be observed by 31P{1H} NMR spectroscopy due to separate detection of the molecular complexes and cationic species. The chelate coordination of the ligand and nitrate ions is retained in all complex species at ambient temperature except for [Er(L)2(NO3)3]. The crystal structure of [Nd(L)(NO3)3(MeCN)]MeCN was determined by X-ray diffraction.  相似文献   

11.
The synthesis of a number of lanthanide tetracyanometallate (TCM) compounds have been carried out by reaction of Ln3+ nitrate salts and potassium tetracyanometallates in solvent systems containing dimethylsulfoxide and water. These reactions result in the isolation of three distinct structure types: (1) monoclinic [Ln(DMSO)4(H2O)3M(CN)4](M(CN)4)0.5·2H2O (Ln = Eu, Tb and M = Pd, Pt), (2) orthorhombic {La(DMSO)3(H2O)2(NO3)M(CN)4}·H2O (M = Pd, Pt), and (3) orthorhombic {Ln(DMSO)3(H2O)(NO3)M(CN)4} (Ln = Tb and M = Pd, Pt; Ln = Er, Yb and M = Pt) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. Structure type 1 is a zero dimensional ionic compound with a M/Ln ratio of 1.5:1. It contains coordinated as well as uncoordinated [M(CN)4]2− (M = Pd, Pt) anions and features relatively long platinophilic interactions. Structure types 2 and 3 differ quite drastically from structure type 1, but they are very similar to each other. Both of the latter are one-dimensional in nature due to chains containing linkage of Ln3+ coordination spheres with trans-bridging [M(CN)4]2− anions. These coordination polymers both have a M/Ln ratio of 1:1, a lack of platinophilic interactions, and incorporation of a bidentate NO3 for charge balance. Photoluminescence properties for select Eu3+ and Tb3+ compounds have been investigated. They show characteristic absorption and emission for the Ln3+ ions, but no significant influence of the tetracyanometallate anions.  相似文献   

12.
The isomeric cyclam ligands Me8[14]anes, designated by LA, LB and LC, produce, on reaction with zinc(II)nitrate, zinc(II)sulphate or zinc(II)chloride corresponding complexes, i.e. dinitrato/mononitrato-nitrate complexes [ZnL(NO3)2]/[ZnL(NO3)](NO3) (L = LA, LB or LC, where the indices A, B and C refer to differing orientations of the four methyl groups on secondary carbons of Me8[14]ane), the diaqua-sulphates [ZnL(H2O)2]SO4 (L = LA, LB or LC), and the diaqua dichloride and dichlorido complexes [ZnL(H2O)2]Cl2 (L = LA or LC) or [ZnLBCl2], respectively. The complexes have been characterised on the basis of elemental analyses, IR, UV-Vis, 1H and 13C NMR spectroscopies, magnetic and conductance data. The structure of [ZnLB(NO3)](NO3) has been determined by X-ray crystallography. The zinc centre is coordinated to a N4O donor set in a square-pyramidal geometry. The complexes show differing electrolytic behaviour in different solvents. In chloroform, the complexes are non-electrolytes, indicating that both anions are coordinated to Zn2+. Antifungal activity of the ligands and complexes against the phytopathogenic fungi Alternaria alternata and Colletotrichum corcolei have been investigated, and positive results were noted.  相似文献   

13.
《Inorganica chimica acta》1988,144(2):275-280
The fragmentation patterns of yttrium oxide cluster species YO+, Y2O2+, Y2O3+, Y3O4+, Y4O6+, Y5O7+, Y6O8+ and Y7O10+ were investigated at collision energies 30–110 and 170 eV by fast atom bombardment tandem mass spectrometry. The collision activated dissociation (CAD) spectra obtained revealed higher thermodynamic stability for the clusters of general formula YαO(3α−1)/2+, where a is an odd number (e.g. YO+, Y3O4+, Y5O7+, Y7O10+) which are also the preferred CAD products for all oxide clusters studied. These most stable oxides are constituted by trivalent yttrium only whereas those containing formally tetravalent yttrium YaO3a/2+, (where a is even) e.g. Y2O3+ and Y4O6+, are extremely unstable. The clusters YaO(3a−2)/2+, (where a is even) containing divalent yttrium, e.g. Y2O2+ and Y6O8+, have considerable stability but their CAD products are again the thermodynamic products YaO(3a−1)/2+. Electronic structures appear to have overriding significance in determining the thermo- dynamic stabilities of the oxide cluster species.  相似文献   

14.
Reaction of 1,3-bis(2′-Ar-imino)isoindolines (HLn, n = 1-7, Ar = benzimidazolyl, N-methylbenzimidazolyl, thiazolyl, pyridyl, 3-methylpyridyl, 4-methylpyridyl, and benzthiazolyl, respectively) with Cu(OCH3)2 yields mononuclear hexacoordinate complexes with Cu(Ln)2 composition. With cupric perchlorate square-pyramidal [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes (n = 1, 3, 4) were isolated as perchlorate salts, whereas with chloride CuII(HLn)Cl2 (n = 1, 4), or square-planar CuIICl2(HLn) (n = 2, 3, 7) complexes are formed. The X-ray crystal structures of Cu(L3)2, Cu(L5)2, [CuII(HL4)(NCCH3)(OClO3)]ClO4, CuIICl(L2) and CuIICl(L7) are presented along with electrochemical and spectral (UV-Vis, FT-IR and X-band EPR) characterization for each compound. When combined with base, the isoindoline ligands in the [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes undergo deprotonation in solution that is reversible and induces UV-Vis spectral changes. Equilibrium constants for the dissociation are calculated. X-band EPR measurements in frozen solution show that the geometry of the complexes is similar to the corresponding X-ray crystallographic structures. The superoxide scavenging activity of the compounds determined from the McCord-Fridovich experiment show dependence on structural features and reduction potentials.  相似文献   

15.
Electrospray ionization mass spectrometry (ESI MS) has been conducted on the ammonium and alkali metal (A=Li+, Na+ and K+) dichromate systems. A large number of previously unknown polyoxochromate species have been characterized. Major series that have been identified include [Ax+1HxCrVIxO4x]+ (Li+, x=1-5; Na+, x=1-7; K+, x=1-4) and [A2x−1CrVIxO4x−1]+ (Li+, x=2, 3; Na+, x=2-4; K+, x=2, 3) in the alkali metal dichromate systems, and [HCrVIxO3x+1] (x=1-5) in the ammonium dichromate system. Several series also contain mixed oxidation state species, ranging from Cr(V) to Cr(II) in conjunction with Cr(VI), which is consistent with the ease of reduction of Cr(VI). Negative ion ESI MS spectra clearly demonstrate the existence of [HCrO4] as the most abundant ion at −20 V, suggesting that its existence in solution is not just hypothetical, as was previously thought. The polymerization units for the series observed include {AHCrO4}, {A2CrO4} and {CrO3}, with the latter prominent in the alkali metal systems. This presumably arises from the fragmentation of dichromate, A2Cr2O7→{A2CrO4}+{CrO3}. Moreover, the ESI MS of the dichromate compounds have illustrated that the preservation of tetrahedral stereochemistry is of paramount importance for these systems, which leads to only limited polymerization compared to the related molybdate and tungstate systems.  相似文献   

16.
A critical analysis of the lanthanide induced paramagnetic shift (LIS) data for several series of Ln3+ complexes of C3 symmetry in terms of structural changes, crystal-field effects and/or variation of hyperfine constants along the lanthanide series was undertaken using a combination of the two-nuclei and three-nuclei techniques together with the classical one-nucleus technique. The crystal-field independent two-nuclei technique to study the isostructurality of a series of lanthanide complexes, is usefully complemented by the three nuclei shift ratio method, which is based exclusively on the experimental shift data, requiring no knowledge of B02, 〈Sz〉 or Cj values. However, this later method cannot provide quantitative values for Fi and Gi. The combined use of the three methods was found to be a powerful analytical tool of the solution structure of lanthanide complexes. Isostructurality of whole series of complexes, either with no change of the Fi, Gi and B02 parameters (L5 and L6), or with changes of the Fi and B02 parameters (L7 and L8), is clearly defined by the combination of the two first methods. In these cases, the three-nuclei method sometimes fully supports such an isostructurality (L6, L8), but in other cases, due to the high structural sensitivity of its α and β parameters, it is able to detect small, unnoticed, structural changes in the complexes of L5 and L7. Clear structural changes, involving the Fi, Gi and B02 parameters, are observed for the series of complexes of (L9), where the three methods agree, involving hydration and carboxylate coordination changes. More subtle structural changes, involving the internal dynamics of the bound ligands, are proposed in other cases (L1-L4). These could also result from a magnification, by the present graphical analysis, of the breaks expected from the gradual structural changes along the series due to the lanthanide contraction.  相似文献   

17.
The interaction of guanine, guanosine or 5-GMP (guanosine 5-monophosphate) with [Pd(en)(H2O)2](NO3)2 and [Pd(dapol)(H2O)2](NO3)2, where en is ethylenediamine and dapol is 2-hydroxy-1,3-propanediamine, were studied by UV-Vis, pH titration and 1H NMR. The pH titration data show that both N1 and N7 can coordinate to [Pd(en)(H2O)2]2+ or [Pd(dapol)(H2O)2]2+. The pKa of N1-H decreased to 3.7 upon coordination in guanosine and 5-GMP complexes, which is significantly lower than that of ∼9.3 in the free ligand. In strongly acidic solution where N1-H is still protonated, only N7 coordinates to the metal ion, but as the pH increases to pH ∼3, 1H NMR shows that both N7-only and N1-only coordinated species exist. At pH 4-5, both N1-only and N1,N7-bridged coordination to Pd(II) complexes are found for guanosine and 5-GMP. The latter form cyclic tetrameric complexes, [Pd(diamine)(μ-N1,N7-Guo]44+ and [Pd(diamine)(μ-N1,N7-5-GMP)]4Hx(4−x)−, (x=2,1, or 0) with either [Pd(en)(H2O)2](NO3)2 or [Pd(dapol)(H2O)2](NO3)2. The pH titration data and 1H NMR data agree well with the exception that the species distribution diagrams show the initial formation of the N1-only and N1,N7-bridged complexes to occur at somewhat higher pH than do the NMR data. This is due to a concentration difference in the two sets of data.  相似文献   

18.
A series of flexible dithioethyl ligands that contain ethyleneoxy segments were designed and synthesized, including bis(2-(pyridin-2-ylthio)ethyl)ether (L1), 1,2-bis(2-(pyridin-2-ylthio)ethoxy)ethane (L2), bis(2-(benzothiazol-2-ylthio)ethyl)ether (L3) and 1,2-bis(2-(benzothiazol-2-ylthio)ethoxy)ethane (L4). Reactions of these ligands with AgNO3 led to the formation of four new supramolecular coordination complexes, [Ag2L1(NO3)2]2 (1), [Ag2L2(NO3)2] (2), [AgL3(NO3)] (3) and [AgL4(NO3)] (4) in which the length of the (CH2CH2O)n spacers and the terminal groups of ligands cause subtle geometrical differences. Studies of the inhibitory effect to the growth of Phaeodactylum tricornutum show that all four complexes are active and the compound 4 has the highest inhibitory activity.  相似文献   

19.
 The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron, generating the phenoxyl-copper(II) species [CuII(L1H)]+·, [Cu(L2H)]+·, [CuII(L1H2)]2+·, and [CuII(L2H2)]2+·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO). Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species. Received: 10 February 1997 / Accepted: 7 April 1997  相似文献   

20.
The synthesis of a series of lanthanide tetracyanoplatinates containing the auxiliary ligands 1,10′-phenanthroline (phen) or 2,2′-bipyridine (bpy) have been carried out by reaction of Ln3+ nitrate salts with phen or bpy and potassium tetracyanoplatinate in solvent systems containing dimethylsulfoxide and dimethylformamide. The use of these solvents has lead to the isolation of [{Ln(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4](Pt(CN)4)2·2C12H8N2·4H2O (Ln = Eu (Eu-1), Tb (Tb-1), Yb(Yb-1)), [Ln(DMF)3(C12H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-2), Eu (Eu-2), Tb (Tb-2)), and [Ln(DMF)3(C10H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-3), Sm (Sm-3), Eu (Eu-3), Tb (Tb-3)) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. The use of DMSO versus DMF as the solvent results in markedly different structural features. Eu-1 contains [{Eu(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4]2+ complex cations where the two Eu3+ centers are linked by a trans-bridging Pt(CN)42− anion to form a dimeric lanthanide complex cation. An additional uncoordinated Pt(CN)42− anion balances charge. Eu-2 and Eu-3 consist of zero-dimensional salts with [Eu(DMF)3(C12H8N2)(H2O)2(NO3)]2+ or [Eu(DMF)3(C10H8N2)(H2O)2(NO3)]2+ complex cations, respectively, and only non-coordinated Pt(CN)42− anions. Photoluminescence measurements illustrate that the Eu3+ and Tb3+ compounds for all three structure types display enhanced emission due to intramolecular energy transfer from the coordinated cyclic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号