首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed.  相似文献   

2.
A series of N2,N4-disubstituted-1,1,3-trioxo-2H,4H-pyrrolo[1,2-b][1,2,4,6]thiatriazine derivatives (PTTDs) was designed and synthesized by a facile route. The biological assay results showed that five most potent compounds displayed inhibitory activity against HIV-1 at low micromolar concentrations (EC50 = 5.1–8.9 μM). Structure–activity relationship analysis indicated that N2-(3-halogenated-benzyl) analogues were more potent than N2-(unsubstituted-benzyl) analogues. The N4-substitutions contributed to the antiviral activity in the following order: 2-/3-cyano substituted benzyl > 2-/3-halogenated benzyl > non-substituted benzyl > 4-halogenated benzyl. Docking studies of the representative compound revealed the binding conformation of these compounds and provided critical insights for the further development of PTTD analogues.  相似文献   

3.
We have determined the kinetic parameters for the hydrolysis by cathepsin B of peptidyl-coumarin amide and intramolecularly quenched fluorogenic peptides with the general structures NH2-Cap-Leu-X-MCA and Abz-Lys-Leu-X-Phe-Ser-Lys-Gln-EDDnp, respectively. Abz (ortho-aminobenzoic acid) and EDDnp (2,4-dinitrophenyl-ethylenediamine) are the fluorescent donor-acceptor pair, and X was Cys(SBzl), Ser(OBzl), and Thr(OBzl) containing benzyl group (Bzl) at the functional side chain of Cys, Ser, and Thr. The peptidyl-coumarin-containing Cys(SBzl), Ser(OBzl), and Thr(OBzl) have higher affinity cathepsin B, supporting the interpretation of the crystal structure of rat cathepsin B complexed with the inhibitor Z-Arg-Ser(OBzl)-CH2Cl that the benzyl group attached to Ser hydroxyl side chain occupies the enzyme S1 subsite [Jia et al. (1995), J. Biol. Chem. 270, 5527]. A similar effect of benzyl group was also detected in the internally quenched peptides. Finally, the benzyl group in substrates containing Cys(SBzl) amino acid at P1 seems to compensate the absence of adequate S2-P2 interaction in the hydrolysis of the peptides having Pro or Ala at P2 position.  相似文献   

4.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

5.
Toluene and related aromatic compounds can be mineralized to CO2 under anoxic conditions. Oxidation requires new dehydrogenase-type enzymes and water as oxygen source, as opposed to the aerobic enzymatic attack by oxygenases, which depends on molecular oxygen. We studied the anaerobic process in the denitrifying bacterium Thauera sp. strain K172. Toluene and a number of its fluoro-, chloro- and methyl-analogues were transformed to benzoate and the respective analogues by whole cells and by cell extracts. The transformation of xylene isomers to methylbenzoate isomers suggests that xylene degradation is similarly initiated by oxidation of one of the methyl groups. Toluene oxidation was strongly, but reversibly inhibited by benzyl alcohol. The in vitro oxidation of the methyl group was coupled to the reduction of nitrate, required glycerol for activity, and was inhibited by oxygen. Cells also contained benzyl alcohol dehydrogenase (NAD+), benzaldehyde dehydrogenase (NADP+), benzoate-CoA ligase (AMP-forming), and benzoyl-CoA reductase (dearomatizing). The toluene-oxidizing activity was induced when cells were grown anaerobically with toluene and also with benzyl alcohol or benzaldehyde, suggesting that benzyl alcohol or benzaldehyde acts as inducer. The other enzymes were similarly active in cells grown with toluene, benzyl alcohol, benzaldehyde, or benzoate. This is the first in vitro study of anaerobic oxidation of an aromatic hydrocarbon and of the whole-cell regulation of the toluene-oxidizing enzyme.Dedicated to Prof. Achim Trebst  相似文献   

6.
The mechanism of anaerobic reduction of NO2? to N2O in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, was investigated. With ascorbate-reduced phenazine methosulfate (PMS) as the electron donor, the nitrite reductase of this photodenitrifier reduced NO2? to NO and a trace amount of N2O. With dithionite-reduced benzyl viologen as the electron donor, the major product of NO2? reduction was NH2OH, and a trace amount of N2O was also produced. The nitrate reductase itself had no NO reductase activity with ascorbate-reduced PMS. It was concluded that the essential product of NO2? reduction by the purified nitrite reductase is NO. Chromatophore membranes stoichiometrically produced N2O from NO2? with any electron donor, such as dithionite-redduced benzyl viologen, ascorbate-reduced PMS or NADH/FMN. The membranes also contrained activity of NO reduction of N2O with either ascorbate-reduced PMS or duroquinol. The NO reductase activity with duroquinol was inhibited by antimycin A. Stoichiometric production of N2O from N2? also was observed in the reconstituted NO2? reduction system which contained the cytochrome bc1 complex, cytochrome c2, the nitrite reductase and duroquinol as the electron donor. The preparation of the cytochrome bc1 complex itself contianed NO reductase activity. From these results the mechanism of NO2? reduction to N2O in this photodenitrifier was determined as the nitrite reductase reducing NO2? to NO with electrons from the cytochrome bc1 complex, and NO subsequently being reduced, without release, to N2O with electrons from the cytochrome bc1 complex by the NO reductase, which is closely associated with the complex.  相似文献   

7.
Benzyl alcohol is commonly used as an antibacterial agent in a variety of pharmaceutical formulations. Several fatalities in neonates have been linked to benzyl alcohol poisoning. Most methods for measuring benzyl alcohol concentrations in serum utilize direct extraction followed by high-performance liquid chromatography. We describe here a novel derivatization of benzyl alcohol using perfluorooctanoyl chloride after extraction from human serum for analysis by gas chromatography–mass spectrometry (GC–MS). The derivative was eluted at a significantly higher temperature respective to underivatized molecule and the method was free from interferences from more volatile components in serum and hemolyzed specimens. Another advantage of this derivatization technique is the conversion of low-molecular-mass benzyl alcohol (Mr 108) to a high-molecular-mass derivative (Mr 504). The positive identification of benzyl alcohol can be achieved by observing a distinct molecular ion at m/z 504 as well as the base peak at m/z 91. Quantitation of benzyl alcohol in human serum can easily be achieved by using 3,4-dimethylphenol as an internal standard. The within run and between run precisions (using serum standard of benzyl alcohol: 25 mg/l) were 2.7% (mean=24.1, S.D.=0.66 mg/l, n=8) and 4.2% (mean=24.3, S.D.=1.03 mg/l, n=8), respectively. The assay was linear for the serum benzyl alcohol concentrations of 2 mg/l to 200 mg/l and the detection limit was 0.1 mg/l. We observed no carry-over (memory effect) problem in our assay as when 2 μl ethyl acetate was injected into the GC–MS system after analyzing serum specimens containing 200 mg/l of benzyl alcohol, we observed no peak for either benzyl alcohol or the internal standard in the total ion chromatogram.  相似文献   

8.
Configurational assignments for the tertiary alcoholic centers of four branched-chain 3-C-nitromethylglycopyranosides, namely, methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-allopyranoside (1), benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-glucopyranoside (4), benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-allopyranoside (5), and methyl 4,6-O-benzylidene-3-C-nitromethyl-2-O-p-tolylsulfonyl-α-D-glucopyranoside (8), were made on the basis of the downfield chemical shifts of their identifiable protons per molar equivalent of added Eu(fod)3, as compared with those of model compounds, of known configuration, having a close structural relationship. In some cases, the assignments were corroborated by the position of the acetyl resonances in the unshifted 60-MHz p.m.r. spectra of the corresponding O-acetyl derivatives.  相似文献   

9.
The effect of benzyl alcohol, benzaldehyde and benzoic acid on the production of extracellular hydrogen peroxide (H2O2) by the ligninolytic fungusPleurotus eryngii was investigated. It was found that an equilibrium between oxidative and reductive reactions of these compounds is established, leading to the continuous production of H2O2. A multienzymatic cyclic system is proposed in which H2O2 is produced extracellularly by the action of aryl-alcohol oxidase on benzyl alcohol, the most abundant compound after redox reactions, and to a lower extent on benzaldehyde. The oxidation products of these reactions, benzaldehyde and benzoic acid, are reduced by intracellular dehydrogenases.  相似文献   

10.
Summary Addition of benzyl viologen to a cell suspension of the aerobic bacterium Azotobacter chroococcum growing on nitrate resulted in a rapid loss of glutamine synthetase activity as assayed in situ. When a glutamine synthetase preparation which exhibited NADH-benzyl viologen oxidoreductase activity was incubated, under air, with NADH and benzyl viologen, glutamine synthetase was inactivated in a short period of time. This in-vitro inactivation process could be prevented in the presence of added catalase, thus indicating that hydrogen peroxide was involved in the process, and by EDTA, suggesting that metal ions are also involved. The characteristics of the benzyl viologen-dependent glutamine synthetase inactivation observed with externally added H2O2 and a preincubated sample are similar.Inhibition of glutamine synthetase inactivation by histidine suggests that hydroxyl radicals, or something with similar reactivity, is the inactivating agent. The fact that inactivation can also be catalyzed by a model system consisting of Fe2+ and H2O2 leads to the conclusion that hydroxyl radicals are most likely produced in a Fenton reaction in which hydrogen peroxide reacts with adventitious iron ions.Since A. chroococcum contained a high level of catalase it may be concluded that cellular compartmentation plays an important role in the in-vivo inactivation of glutamine synthetase.  相似文献   

11.
Poly(Glu(OBzl)-Gly)n, poly(Glu-Gly)n, poly(Gly)-(Glu(OBzl)-Gly), and poly(Gly-Glu-Gly) were synthesized from the pentachlorophenyl esters of the sequential monomer. Both of the polymers containing free glumatic-acid residues are soluble in water, as is the lower molecular weight fraction of the polytripeptides with the benzyl ester in place. Circular dichroism studies and infrared dichroism studies suggest that the 21 helix is favored for the polydipeptide with removal of the benzyl ester reducing the conformational integrity. The polytripeptide showed evidence of 31 helix in addition to the 21 form, depending on solvent. A rationale for the conformations observed is developed based on the bulkiness of the side-chain residues and conformational stabilization, in certain cases, by hydrophobic interactions between the benzyl ester groups.  相似文献   

12.
Rhodopseudomonas sphaeroides f. denitrificans grown photosynthetically with NO 3 - under anaerobic conditions accumulated NO 2 - in the culture medium. In washed cells succinate, lactate, fumarate, citrate and malate, were effective electron donors for the reduction of NO 3 - , NO 2 - and N2O to N2 gas. Nitrate reductase was inhibited by amytal and potassium thocyanate. Nitrite reductase activity was severely restricted by potassium cyanide, sodium diethyldithiocarbamate, Amytal and 2-n-heptyl-4-hydroxyquinoline-N-oxide whereas N2O reductase was inhibited by NaN3, C2H2 and KCNS. Cells incubated with either K15NO3 or K15NO2 produced 15N2O and 15N2. A stoichiometry of 2:1 was recorded for the reduction of either NO 3 - or NO 2 - to N2O and N2 and for N2O to N2 it was 1:1.Abbreviations BVH reduced benzyl viologen - MVH reduced methyl viologen - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - CCCP carbonyl cyanide-m-chlorophenyl-hydrazone - DIECA diethyl dithiocarbamate - KCN potassium cyanide  相似文献   

13.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

14.
Molecular motion of 1,6-diphenyl-1,3,5-hexatriene embedded in intact guinea pig alveolar macrophage membranes was investigated by using techniques of nanosecond timeresolved fluorescence anisotropy measurements in the temperature range of 0–50 °C, and as a function of benzyl alcohol concentration. It was shown that molecular arrangement and microheterogeneity of the hydrocarbon region surrounding 1,6-diphenyl-1,3,5-hexatriene molecules are dependent on the temperature and benzyl alcohol concentration. The lipid orientation order parameter, Sv, showed a discontinuity in the temperature range 12–40 °C, which may indicate a phase transition. N-Formylmethionylphenylalanine-stimulated production of O2? from macrophages increased with temperature parallel with changes in Sv. Benzyl alcohol decreases the magnitude of the lipid order parameter at all temperatures studied. In the same concentration range of benzyl alcohol, stimulated O2? production by macrophages was inhibited. These data show the complex relationship between lipid integrity in macrophage membranes and a physiological function of these cells. In addition, the results indicate that benzyl alcohol influences the integrity of both the protein and lipid hydrophobic regions of the membrane.  相似文献   

15.
《Bioorganic chemistry》1987,15(2):115-124
Thiiranium ions formed from the cysteine or glutathione conjugates of 1,2-dihaloethanes are believed to be responsible for the genotoxicity of the parent alkyl halides. The conversions of specifically deuterated β-hydroxyethyl sulfides to the corresponding β-haloethyl sulfides are studied to provide direct evidence for the involvement of thiiranium ions in the reactions of the cysteine conjugates of 1,2-dihaloethanes. S-(2-Hydroxyethyl-1, 1-d2)-l-cysteine is converted to an equal mixture of the 1,1-d2 and 2,2-d2 isomers of the corresponding S-(2-haloethyl)-l-cysteines in concentrated hydrochloric, hydrobromic, or hydroiodic acids without detectable formation of the 2,2-d2 isomer of the parent hydroxyethyl derivative. Dissolution of S-(2-hydroxyethyl)-l-cysteine in trifluoromethanesulfonic acid yields a compound with the NMR spectral properties of S-(l-cysteinyl)ethyl thiiranium trifluoromethanesulfonate. The organosoluble S-(2-hydroxyethyl-1,1-d2) benzyl sulfide is converted to an equal mixture of the 1,1-d2 and 2,2-d2 isomers of S-(2-chloroethyl) benzyl sulfide by thionyl chloride or triphenylphosphine: carbon tetrachloride. These results demonstrate the involvement of thiiranium ion intermediates in the conversion of 2-hydroxyethyl sulfides to 2-haloethyl sulfides in halogen acids and a similar symmetrical intermediate in the chlorination reactions effected by thionyl chloride or triphenylphosphine: carbon tetrachloride.  相似文献   

16.
A benzyl alcohol oxidase (BAO) was purified to homogeneity from Botrytis cinerea. The enzyme was found to have a molecular mass of 214 kD with a trimeric structure, and optimal pH and temperature of 5.0 and 30°C, respectively. The enzyme activity was not sensitive to metal ions or to metal ion chelators, while thiol blocking reagents strongly inhibited BAO activity. Sulfur dioxide irreversibly inhibited the enzyme activity and the inhibitory effect of ethanol was weak and reversible. Benzyl alcohol was the most effective alcohol substrate for BAO. Para or meta monosubstituted benzyl alcohol with methyl or methoxy groups were good substrates. BAO also oxidized cinnamyl alcohol, furfuryl alcohol, and some terpenic alcohols· with an alkenyl group near the reactive carbinol. Secondary alcohol, methanol and phenol were not substrates. Product inhibition studies suggested that benzaldehyde and benzyl alcohol were bound at different places to the active site. O2 was the only electron acceptor identified and Botrytis cinerea benzyl alcohol oxidase was classified .as EC 1.1.3.7 according to stoichiometrical studies. We discuss the metabolic role of BAO in the Botrytis cinerea-grape host-parasite relationship.  相似文献   

17.
To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25–35% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370–740 GBq/μmol with a total synthesis time of 35–40-minutes from EOB.  相似文献   

18.
Wolinella succinogenes can grow by anaerobic respiration with fumarate or polysulfide as the terminal electron acceptor, and H2 or formate as the electron donor. A ΔhydABC mutant lacking the hydrogenase structural genes did not grow with H2 and either fumarate or polysulfide. In contrast to the wild-type strain, the mutant grown with fumarate and with formate instead of H2 did not catalyze the reduction of fumarate, polysulfide, dimethylnaphthoquinone, or benzyl viologen by H2. Growth and enzymic activities were restored upon integration of a plasmid carrying hydABC into the genome of the ΔhydABC mutant. The ΔhydABC mutant was complemented with hydABC operons modified by artificial stop codons in hydA (StopA) or at the 5′-end of hydC (StopC). The StopC mutant lacked HydC, and the hydrophobic C-terminus of HydA was missing in the hydrogenase of the StopA mutant. The two mutants catalyzed benzyl viologen reduction by H2. The enzyme activity was located in the membrane of the mutants. A mutant with both modifications (StopAC) contained the activity in the periplasm. The three mutants did not grow with H2 and either fumarate or polysulfide, and did not catalyze dimethylnaphthoquinone reduction by H2. We conclude that the same hydrogenase serves in the anaerobic respiration with fumarate and with polysulfide. HydC and the C-terminus of HydA appear to be required for both routes of electron transport and for dimethylnaphthoquinone reduction by H2. The hydrogenase is anchored in the membrane by HydC and by the C-terminus of HydA. The catalytic subunit HydB is oriented towards the periplasmic side of the membrane. Received: 29 December 1997 / Accepted: 6 March 1998  相似文献   

19.
The effective treatment for dengue virus infection continues to be a challenge. We herein reported our continued SAR exploration on the spiropyrazolopyridone scaffold. Introducing different substituents at the 3́- or 5́-site of the pyrazolopyridone core or moving the benzyl chain to the adjacent nitrogen led to a significant loss of potency on DENV-2. While a narrow range of substitutions were tolerated at the para-position of the phenyl ring, di-substitution on the phenyl ring is beneficial for DENV-2 potency and has variable influences on DENV-3 potency depending on the exact compound. Among these molecules, compounds 22 (JMX0376) with 4-chloro-3-fluorobenzyl and 24 (JMX0395) with 2,4-bis(trifluoromethyl)benzyl showed the most potent and broadest inhibitory activities against DENV-1 to −3 with nanomolar to low micromolar EC50 values.  相似文献   

20.
The synthesis of new dermorphin analogues is described. The (R)‐alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α‐methyl‐β‐azidoalanine or α‐benzyl‐β‐azido(1‐piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr‐(R)‐Ala‐(R)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α‐benzyl‐β‐azidoAla residue in position 3. The (R) configuration led to the formation of a type I β‐turn, whilst switching to the (S) configuration gave rise to an inverse β‐turn of type I′, followed by the formation of a very short β‐sheet. The selectivity of Tyr‐(R)‐Ala‐(R) and (S)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号