首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facultative potentially tetradentate thioether ligands 1,2-bis(methylthioethylthio)ethane (2,2,2), 1,3-bis(2-methylthioethylthio)propane (2,3,2) and 1,2-bis(3-methylthiopropylthio)ethane (3,2,3) react with copper(II) salts to form Cu2(2,2,2)Cl4, Cu3(ligand)X6 (ligand = 2,3,2 and 3,2,3 X = Cl; ligand = 2,2,2 2,3,2 and 3,2,3 X = Br), and Cu(ligand)(ClO4)2. The stoichiometry and structures of these complexes are discussed in terms of the steric demands of the ligand and the nature of the halide. The [Cu(2,3,2)(ClO4)] ClO4 and [Cu(3,2,3)(ClO4) [ClO4 complexes have electronic spectra which exhibit the intense 600 nm band characteristic of the "blue" copper proteins. In fact, the spectrum of [Cu(2,3,2)(ClO4)]ClO4 is very similar to that of pseudomonas aeroginosa azurin.  相似文献   

2.
Complexation reactions in the quaternary system Cu/ATP/3,3,3-tet/Urd have been studied. The stability constants of the complexes of the Cu(ATP)(3,3,3-tet)H(x)(Urd) type have been determined by computer analysis of the potentiometric titration. On the basis of the results of spectroscopic as well as equilibrium studies, the mode of interactions has been proposed. Metal ions coordinate phosphate groups of ATP and nitrogen atoms of polyamine. It has been established that in the conditions of the complex Cu(ATP)(3,3,3-tet) formation, uridine introduced into the Cu(II)/ATP/3,3,3-tet ternary system is involved in hydrogen bonding with the endocyclic nitrogen atoms N(1) and N(7) of the ATP purine ring and formation of the adduct Cu(ATP)(3,3,3-tet)H(Urd) is observed. Introduction of metal ions into the system changes substantially the mode of interactions between complementary base pairs relative to that proposed in the Watson and Crick model.  相似文献   

3.
1. In the course of the present investigation, three chelating agents (2,3,2 tet, cyclam or EDTA) were tested for their therapeutic effect on nickel and cobalt poisoned toad. 2. Our results showed that EDTA appears to be superior to the two other ligands, which have been proved to be chemical ligands for Ni and Co in vitro. 3. EDTA was able to prevent disturbances in the activities of serum aspartate and alanine aminotransferases, alkaline phosphatase, total protein, urea, uric acid and blood glucose level. 4. Our results suggest caution in the use of 2,3,2 tet or cyclam in human Ni and Co intoxication.  相似文献   

4.
The formation constant, log β4 = 62.3 for [Pd(CN)4]2− is reported at 25 °C in 0.1 M NaClO4. This value of log β4 was determined using a competition reaction, monitored using UV-Vis spectroscopy and 1H NMR. The competition reaction used was with the tetraamine ligand 2,3,2-tet(1,4,8,11-tetraazaundecane), for which log K1 = 47.8 at 25 °C in 0.1 M NaClO4 was determined by competition with thiocyanate, as described by earlier workers (Q.Y. Yan, G. Anderegg, Inorg. Chim. Acta 105 (1985) 121.). Also reported is a value of log β4 for the [Pd(SCN)4]2− ion of 27.2 in 0.1 M NaClO4, determined by competition with 2,2,2-tet. Measurement of log K1 for cyclam with Pd(II) was attempted using a competition reaction with cyanide, combined with the very high value of log β4 for [Pd(CN)4]2− measured here. It appeared that the equilibrium being followed was actually [Pd(cyclam)]2+ + 2CN ? [Pd(cyclam)(CN)2], for which a constant of log K = 5.2 was obtained. 1H NMR and IR studies suggested that the complex [Pd(cyclam)(CN)2] was prone to oxidation to Pd(IV), followed by disproportionation to [Pd(cyclam)]2+ and, presumably, (CN)2. The very high value of log β4 for [Pd(CN)4]2− found here appears to be the highest formation constant known for any metal ion.  相似文献   

5.
《Inorganica chimica acta》1986,119(2):131-139
In an effort to quantitatively estimate steric contributions to the aquation rates of a series of structurally related cobalt(III) tetraamine complexes, strain energy minimization calculations have been performed on the reactant and some plausible transition state structures. Free energies of activation ΔG*obs, are factored as: ΔG*obs, = ΔG*bb + ΔG*strain + ΔG*CF + ΔG*solvation + … where ΔG*bb is the free energy change associated with bond breaking, ΔG*solvation is the solvation free energy difference between the reactant and a proposed transition stare, ΔG*CF is the difference in crystal field stabilization between the reactant and a proposed transition state, and ΔG*strain is the strain energy difference between the reactant complex and a proposed transition state. The activation energy for the aquation of a hypothetical ‘strain free’ complex is defined as ΔG*int and reflects the energy required for the bond breaking step with all other terms. For the cations trans-(RR,SS)-dichloro-1,8- diamino-3,6-diazaoctanecobalt(III)(trans [Co(2,2,2- tet)Cl2]+), trans-(RR,SS)- or trans-(RS)-dichloro-1.9- diamino-3,7-diazanonanecobalt(III)(trans [Co(2,3,2- tet)Cl2]+ and trans-(RS)-dichloro-1,10-diamino-4,7- diazadecanecobalt(III)(trans[Co(3,2,3-tet)Cl2]+) ΔG*int is found to be a constant 123 kJ/mol. For the trans-dichlorocobalt(III) complexes with the ligands 1,4,7,10-tetraazacyclotridecane([13]-ane-N4), 1,4,8, 11-tetraazacyclotetradecane([14]-ane-N4), 1,4,8,12- tetraazacyclopentadecane([15]-ane-N4) and 1,5,9,13- tetraazacyclohexadecane([16]-ane-N4), ΔG*int lies in the range 133–139 kJ/mol.  相似文献   

6.
The interactions between the nucleotides: adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) with spermine (Spm) and 1,11-diamine-4,8-diazaundecane (3,3,3-tet), as well as Cu(II) ions are studied. In the metal-free systems nucleotide-polyamine molecular complexes have been found to form, in which the interaction centres are the nitrogen atoms of the purine ring N(1) and N(7), oxygen atoms of the phosphate group of the nucleotide (for 3,3,3-tet) and protonated nitrogen atoms of the polyamine. Significant differences in the mode of metallation between the systems with Spm and 3,3,3-tet have been established. In the systems with Spm, the main products are protonated species with [N(7),O] chromophore and the nitrogen N(1) is involved in the intramolecular interaction additionally stabilising the complex. In the systems with 3,3,3-tet the formation of metal-ligand-ligand (MLL) species has been observed, in which the oxygen atoms from the phosphate group and the nitrogen atoms from the polyamine are involved in the metallation, while the N(1) and N(7) atoms from the purine ring of the nucleotide remain outside the inner coordination sphere of the copper ion. The main centre of metallation in the nucleotide, both with Spm and 3,3,3-tet, is the phosphate group of the nucleotide.  相似文献   

7.
The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.  相似文献   

8.
The combination of anhydrous SnCl4 with 18-crown-6 in aqueous conditions results in formation of the non-hydrolysed product [cis-SnCl4(H2O)2] · 18-crown-6 · 2H2O. The X-ray crystal structure shows extensive intermolecular hydrogen bonding involving the cis-octahedral SnCl4(H2O)2 units, the uncoordinated water molecules and the crown ether. Similarly, [2,2,2]cryptand reacts with an aqueous solution formed by adding anhydrous GaCl3 to slightly acidic water, affording [[2,2,2]cryptand + 2H+][GaCl4]2.  相似文献   

9.
The cytoskeletal adaptor protein vinculin plays an important role in the control of cell adhesion and migration, linking the actin cytoskeleton to adhesion receptor complexes in cell adhesion sites. The conformation of the vinculin tail dimer, which is crucial for protein function, was analyzed using site-directed spin labeling in electron paramagnetic resonance spectroscopy. Interspin distances for a set of six singly and four doubly spin-labeled mutants of the tail domain of vinculin were determined and used as constraints for modeling of the vinculin tail dimer. A comparison of the results obtained by molecular dynamic simulations and a rotamer library approach reveals that the crystal structure of the vinculin tail monomer is essentially preserved in aqueous solution. The orientation of monomers within the dimer observed previously by x-ray crystallography agrees with the solution electron paramagnetic resonance data. Furthermore, the distance between positions 1033 is shown to increase by >3 nm upon interaction of the vinculin tail domain with F-actin.  相似文献   

10.
The occurrence of non-covalent interactions and formation of molecular complexes between adenosine 5'-monophosphate (AMP) or cytidine 5'-monophosphate (CMP) and the polyamines, putrescine, 1,7-diamino-4-azaheptane (3,3-tri), spermidine and 1,11-diamino-4,8-diazaundecane (3,3,3-tet), were detected in metal-free systems. The stoichiometric composition of the adducts and their stability constants were determined on the basis of computer analysis of the titration data, taking into account the fact that the acid-base properties of the system change as a result of these interactions. Spectral analysis allowed an identification of the interaction centers in the adducts as protonated amine groups of polyamines, phosphate groups as well as nitrogen atoms of high electron density from nucleotides. Unexpectedly, no participation of the phosphate group from AMP in the formation of molecular complexes with tetramine-3,3,3-tet was detected. The stoichiometric composition and stability constants of mixed-ligand complexes in the systems of Cu(II) with AMP or CMP and polyamines were obtained. Analysis of the results of equilibrium studies and 13C, 31PNMR, UV-Vis, IR and EPR data permitted determination of the mode of coordination. In the systems with metal ions, the formation of molecular complexes Cu(CMP)H4(3,3-tri) was found, apart from heteroligand complexes of the MLL' and MLL'Hx type. In protonated complexes the occurrence of non-covalent interactions leading to stabilization of the coordination compounds was observed. The differences in the character of coordination biogenic amines and their biologically inactive analogs were identified.  相似文献   

11.
[Cu(bapp)ClO4]+ (1) and [Cu(bapp)Cl]+ (2) were prepared by the reaction of 1,4-bis(3-aminopropyl)piperazine (bapp) with copper acetate and copper chloride in the presence of sodium perchlorate, respectively, and structurally characterized. Complex 1 has a square-pyramidal geometry, whereas [Cu(3,2,3-tet)(ClO4)]+ (A) has a polymeric octahedral geometry in its X-ray crystal structure. Complex 1 is stable against disproportionation, whereas complex A is unstable in the mono-valent Cu(I) state. An aqua ligand on complex 1 in aqueous solution is substituted by NO with kinetic constants of kf=43±2 M−1 s−1 and kb=(8.8±0.2)×10−2 s−1 at 25 °C, whereas there were no spectral changes observed for complex A in saturated NO solution.  相似文献   

12.
The syntheses, structures and magnetic properties of five new manganese (III) cyclam complexes, trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O, trans-[Mn(cyclam)I2]I, trans-[Mn(cyclam)(ONO)2]ClO4, trans-[Mn(cyclam)(OClO3)2]ClO4 and trans-[Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2, are reported. Cyclam is the tetradentate amine ligand 1,4,8,11-tetraazacyclotetradecane. The complexes all exhibit pronounced tetragonal elongation of the coordination octahedron with the four cyclam nitrogens occupying the four equatorial positions. The magnetic properties are consistent with the formulation of the complexes as high-spin d4 systems. trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O is shown to be a convenient starting material for the syntheses of trans cyclam complexes. [Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2 exhibits extremely short intermolecular hydrogen bonds resulting in a pseudo-chain structure. The tilt of the axial ligands with respect to the equatorial plane containing the manganese and the cyclam nitrogen atoms is discussed.  相似文献   

13.
《Inorganica chimica acta》1986,124(3):169-173
Several copper(II)-dipeptide complexes were investigated in water-solvent (acetonitrile, N,N- dimethylformamide and dimethylsulfoxide) mixtures by electrochemical methods. The effects of the solvents on the reduction potentials of the copper- (II) dipeptide complexes were discussed. The reduction potentials in mixed solvents were different from those in aqueous solution and the order of reduction potentials was found to be due to the functional groups of the amino acid residue of the peptides in spite of quasi-reversible electrode reactions for the complexes.  相似文献   

14.
The oxidation of methionine (Met) plays an important role during biological conditions of oxidative stress as well as for protein stability. By choosing [oxo(salen)chromium(V)] ions, [(salen)Cr(V)=O](+) (where salen = bis(salicylidene)ethylenediamine) as suitable biomimics for the peptide complexes that are formed during the reduction of Cr(VI) with biological reductants, the oxidation of methionine and substituted methionines with five [oxo(salen)chromium(V)] complexes in aqueous acetonitrile has been investigated by spectrophotometric, electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) methods. In aqueous solution [(salen)Cr(V)=O](+) ion is short lived, ligation of H(2)O to the Cr center takes place and [O=Cr(V)(salen)-H(2)O](+) adduct is the active oxidant. The reaction is found to be first order each in the oxidant and the substrate. The presence of water in the reaction system accelerates the reaction rate and an inactive, stable mu-oxo dimer is also formed during the course of the reaction. On the basis of spectral, kinetic and product analysis study a mechanism involving direct oxygen transfer from [O=Cr(V)(salen)-H(2)O](+) to methionine has been proposed as a suitable mechanism for the reaction.  相似文献   

15.
Reactions between the nucleotides GMP, AMP and ApG and the complexes Ni(tren), Ni(cyclam) and NiCR in aqueous solution have been monitored by (1)H, (15)N NMR and UV spectroscopy. The three nickel complexes display different properties in reactions with nucleotides. Ni(tren) which has a pseudo-octahedral coordination geometry was shown to bind to all three nucleotides. Ni(cyclam) and NiCR, both with four nitrogen atoms in a square planar arrangement are not able to bind to nucleotides efficiently because of steric hindrance. Oxidation of Ni(cyclam) by KHSO(5) to produce trivalent Ni(III)(cyclam) improves the coordination capacity, while oxidation of NiCR does not produce a similar effect. The nucleotides interact with trivalent nickel complexes to different extent. Ni(III)CR is seen to oxidize GMP gradually but does not affect AMP significantly. Ni(III)(cyclam), on the other hand, does not oxidize either GMP or AMP at the 1:1 concentration of oxidant used. This result is probably due to the lower redox potential of Ni(cyclam). ApG binds less efficiently to the Ni complexes but is easier oxidized than the mononucleotides.  相似文献   

16.
We report here the synthesis, characterization and kinetic studies of cis-[RuCl2(cyclen)]+ in aqueous solution, where cyclen is the macrocyclic ligand 1,4,7,10-tetraazacyclododecane. The complex releases one Cl producing cis-[RuCl(OH)(cyclen)]+ in aqueous solution at pH 4.60. The product of this reaction was characterized by Ultraviolet-Visible (UV-Vis) spectrum in comparison to the synthesized cis-[RuCl(OH)(cyclen)](BF4)·2H2O. The electrochemical data showed that Epc of the Ru(III/II) peak increases as the macrocycle ring size decreases and also when the trans conformation is changed to cis. The chloride affinity of Ru(III) depends on the macrocycle ring size since cis-[RuCl2(cyclam)]+ (cyclam=1,4,8,11-tetraazacyclotetradecane) does not release chloride for at least 12 h. The overall effect between cyclam and cyclen reflects the fact that the electron involved in the reduction enters a nonbonding π-d orbital and its energy is affected by the macrocyclic ligand.  相似文献   

17.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

18.
The objective of the study was to develop a sensitive and specific assay for studying the pharmacokinetics of a novel calcium antagonist, a benzimidazolyl-substituted tetraline derivative, mibefradil (I) in the dog. The assay involves liquid-liquid extraction of a biological sample, reversed-phase HPLC separation and fluorescence detection (λex = 270 nm and λem = 300 nm) of a sample components. Each sample was eluted with a mobile phase pumping at a flow-rate of 2 ml/min. The mobile phase composition was a mixture of acetonitrile and aqueous solution (38:62, v/v). The aqueous solution contains 0.0393 M KH2PO4 and 0.0082 M Na-pentanesulphonic acid. The retention times were 10.7 min for I, and 12.2 min for internal standard Ro 40–6792. Calibration curves with concentrations of I ranging from 10 to 500 ng/ml were linear (r2 > 0.99). The detection limit for I was 0.5 ng/ml when 0.5 ml of plasma or urine was used. Intra- and inter-day accuracy and precision were within 10%. The assay was successfully applied to the pharmacokinetic studies of I in dogs.  相似文献   

19.
A total of 30 Megasphaera elsdenii strains, selectively isolated from the feces of organically raised swine by using Me109 M medium, and one bovine strain were analyzed for tetracycline resistance genotypic and phenotypic traits. Tetracycline-resistant strains carried tet(O), tet(W), or a tet gene mosaic of tet(O) and tet(W). M. elsdenii strains carrying tet(OWO) genes exhibited the highest tetracycline MICs (128 to >256 microg/ml), suggesting that tet(O)-tet(W) mosaic genes provide the selective advantage of greater tetracycline resistance for this species. Seven tet genotypes are now known for M. elsdenii, an archetype commensal anaerobe and model for tet gene evolution in the mammalian intestinal tract.  相似文献   

20.
P.J. Cox 《Inorganica chimica acta》2006,359(10):3183-3190
Copper(I) halide complexes containing the diphosphane xantphos (4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene) and some heterocyclic thione ligands have been synthesized and characterized by 1H NMR, IR spectroscopy, elemental analyses and melting point determinations. The complexes can be readily obtained by the addition of the thione ligand to a CuX-diphosphane adduct in acetonitrile/methanol solution. The molecular structures of [CuBr(xantphos)(dmpymtH)] and [CuI(xantphos)(imdtH2)] · CH3CN have been established by single-crystal X-ray diffraction. Each of these structures features a tetrahedral copper(I) center with two phosphorus atoms from the chelating diphos ligand, one halogen atom and the exocyclic sulfur atom of the heterocyclic thioamide unit. Rapid decomposition of the mixed-ligand complexes via ligand dissociation occurs upon standing of their acetonitrile solutions at room temperature for several days. The resulting colored crystals, which not only on elemental analysis but also on the basis of their NMR and IR spectra, are found to be phosphane-free coordination polymers of composition [CuX(thione)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号