首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Acetamido-2- deoxy-6-O-, -xylopyranosyl-O-D-glucopyranose has been synthesized in crystalline form by condensation of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl chloride (1) with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranoside (2), followed by O-deacetylation and catalytic hydrogenation. Condensation of 2 with 2,3,4-tri-O-chlorosulfonyl-β-D-xylopyranosyl chloride, followed by dechlorosulfonylation and acetylation, gave benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(2,3,4-tri-O-acetyl-α-D-xylopyranosyl)β-D-glucopyranoside in crystalline form. O-Deacetylation, followed by catalytic hydrogenation, gave 2-acetamido-2-deoxy-6-O-α-D-xylopyranosyl-α-D-glucopyranose in crystalline form.  相似文献   

2.
《Carbohydrate research》1986,153(1):25-31
The remaining unknown diastereoisomer of 5-hydroxymethyl-1,2,3,4-cyclohexanetetrol with the (1,2,3,4,5/0)-configuration has been synthesised as the pentaacetate from dl-(1,2/3,4,5)-1,3,4-triacetoxy-5-acetoxymethyl-2-bromocyclohexane. In addition, a new synthesis of three pseudo-sugars having the α- and β-galacto and α-talo configurations is also described.  相似文献   

3.
Addition of phenyl azide to 3,5-di-O-acetyl-6,7-dideoxy-1,2-O-isopropylidene-β-l-idio-hept-6-ynofuranose (1) and subsequent saponification gave a 4-substituted 1-phenyl-1,2,3-triazole derivative (3) whose optical rotatory dispersion (o.r.d.) curve was positive. The α-d-gluco analog (5) of 1 similarly gave the 5-epimer (7) of 3; its o.r.d. curve was negative. Both 3 and 7 were degraded to the known 1-phenyl-1,2,3-triazole-4-carboxaldehyde. Similarly, addition of 2,4,6-trimethylbenzonitrile N-oxide to 1 or 5 gave the corresponding, crystalline 3-mesitylisoxazoles as single products; 13C-n.m.r. spectroscopy was used to establish the orientation of addition. Related 3-mesitylisoxazoles (11 and 13) were obtained from 1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose (10) and its l-glycero 6-epimer (12), respectively; 11 showed the expected, large levorotation, and the 6-epimer 13 was also levorotatory. Benzonitrile (N-phenyl)imine, prepared in situ from 1-(α-chlorobenzylidene)-2-phenylhydrazine and base, did not react with 10 (or its 6-epimer 12), but did react with the 6-keto analog to give a 5-substituted 1,3-diphenyl-1,2-diazole.  相似文献   

4.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

5.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

6.
《Carbohydrate research》1986,148(2):249-255
Two new diastereoisomers of the pseudo-hexuronate methyl 2,3,4,5-tetrahydroxycyclohexane-1-carboxylate, having (1,3/2,4,5)- (8) and (1,3,4/2,5)-configurations (16), have been synthesised from the readily available bromo-lactone (1) of the endo-adduct of furan and acrylic acid. Treatment of 1 with 20% hydrogen bromide in acetic acid at 80° resulted in regioselective cleavage of the 1,4-anhydro ring to give dl-(1,3,5/2,4)-2,3-diacetoxy-4,5-dibromocyclohexane-1-carboxylic acid (2). Debromination of 2 with zinc dust gave dl-(1,3/2)-2,3-diacetoxycyclohex-4-ene-1-carboxylic acid (5). The methyl ester (6) of 5 was oxidised with osmium tetraoxide and hydrogen peroxide, followed by acetylation, to give the tetra-acetate of 8. Epoxidation of 6 gave two isomeric epoxides, each of which gave 16 on hydrolysis followed by O-deacetylation.  相似文献   

7.
Methyl phenylphosphonite or dimethyl phosphite underwent acid-catalyzed addition reactions with some hexofuranos-5-ulose 5-(p-tolylsulfonylhydrazones) (7, 9, and 16), to give the corresponding adducts, 17, 18, 19, and 21. The isomer ratios of the adducts were affected by a 3-substituent in the hydrazones. Treatment of adduct 21 with sodium borohydride and sodium dihydrobis(2-methoxyethoxy)-aluminate (SDMA), followed by acid hydrolysis, gave 5,6-dideoxy-3-O-methyl-5-C-(phenylphosphinyl)-d-glucopyranose (26), which was acetylated to give the 1,2,4-tri-O-acetyl derivatives 27a and 27b. Conformational analysis of compound 27a by X-ray crystallography revealed that the compound was 1,2,4-tri-O-acetyl-5,6-dideoxy-3-O-methyl-5-C-[(S)-phenylphosphinyl]-β-d-glucopyranose in the 4C1(d) form having all substituents equatorial.  相似文献   

8.
β-Galf-(1→5)-β-Galf-(1→6)-α-Manp-(1→6)-α-Manp, the immunodominant epitope in the cell-wall galactomannan of Aspergillus fumigatus, was synthesized for the first time as its allyl glycoside. The key disaccharide glycosyl donor, 2,3,5,6-tetra-O-benzoyl-β-d-galactofuranosyl-(1→5)-2-O-acetyl-3,6-di-O-benzoyl-β-d-galactofuranosyl trichloroacetimidate (10), was constructed by 5-O-glycosylation of 1,2-O-isopropylidene-3,6-di-O-benzoyl-α-d-galactofuranose (4) with 2,3,5,6-tetra-O-benzoyl-β-d-galactofuranosyl trichloroacetimidate (5), followed by 1,2-O-deacetonation, acetylation, selective 1-O-deacetylation, and trichloroacetimidation. The target tetrasaccharide 16 was obtained by the condensation of allyl 2,3,4-tri-O-benzoyl-α-d-mannopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-α-d-mannopyranoside (14) as glycosyl acceptor with the disaccharide glycosyl donor 10, followed by deprotection.  相似文献   

9.
Two new compounds, an aromatic amide C-glycoside, 4-C-β-D-glucopyranosyl-3,5-dihydroxy-2-methoxybenzamide (1) and a cyclitol derivative, 4-O-caffeoyl-2-C-methoxycarbonyl-1-C-methyl-2,3,6-trihydroxycyclohexanecarboxylic acid (2), were isolated from the methanol soluble extract of the stem barks of Piper guineense Schum and Thonn, together with four known quinic acids derivatives including 3-O-caffeoyl-1-methylquinic acid (3), 3-O-feruloylquinic acid (4), ethyl-4-O-feruloylquinate (5), and 5-caffeoylquinic acid (6). Their structures were established on the basis of detailed spectroscopic analysis. The radical scavenging activity of the isolates were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Five of them were found to have significant radical scavenging activities, while compounds 2 and 3 displayed the highest activities with IC50 values of 8.35 and 7.06 μM, respectively.  相似文献   

10.
The following primary sulphonates have been converted into the corresponding deoxyfluoro derivatives by reaction with potassium fluoride in ethylene glycol:1,2:3,4-di-O-isopropylidene-6-O-tosyl α-D-galactopyranose (1), methyl 2,3-O2-isopropyliden-5-O-tosyl-α,β-D-ribofuranoside (2), 1,2:3,4-di-O-methylene-6-O-tosyl-α-D-glucofuranose (3), 3,5-di-O-benzylidene-1,2-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (4), and 1,2:3,5-di-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (5). The yields were generally poor; in the reaction of 1, a major by-product was 6-O-(2-hydroxyethyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (11). The reaction of the primary hydroxyl precursor of each of the above tosylates with N2-(2-chloro- 1,1,2-trifluoroethyl)-N,N-diethylamine generally yielded the O-chlorofluoroacetyl derivative; however, 1,2:3,5-di-O-methylene-α-D-glucofuranose (12) was converted into the 6-deoxy-6-fluoro derivative (8). The 19F resonances of compounds containing the CH2F moiety fall between φC +213 and φC +235 p.p.m. The differences between the vicinal19F-1H couplings of compounds having the D-gluco and D-galacto configurations clearly reflect the influence of the C-4O-4 substitutents on the populations of the C-5C-6 rotamers. A novel type of noise-modulated, heteronuclear decoupling experiment is described.  相似文献   

11.
Addition of 2,2′-anhydro-[1-(3-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)uracil] (1) to excess 2-litho-1,3-dithiane (2)in oxolane at ?78° gave 2-(1,3-dithian-2-yl)-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)pyrimidinone (3), O2,2′-anhydro-5,6-di-hydro-6-(S)-(1,3-dithian-2-yl)-5′-O-trityluridine (4), and 2-(1,4-dihydroxybutyl)-1,3-dithiane (5) in yields of 15, 30, and 10% respectively. The structure of 3 was proved by its hydrolysis in acid to give 2-(1,3-dithian-2-yl)-4-pyrimidinone (6) and arabinose, and by desulfurization with Raney nickel to yield the known 2-methyl-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)-pyrimidinone (7). Detritylation of 3 without glycosidic cleavage could only be effected by prior acetylation to 1-(2,3-di-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)-2-(1,3-dithian-2-yl)-4(1H)-pyrimidinone (8) which, after treatment with acetic acid at room temperature for 65 h followed by the action of sodium methoxide gave 2-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyl-4(1H)-pyrimidinone (10) in 45% yield. Detritylation of 4 in boiling acetic acid gave 5,6-dihydro-6-(S)-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyluracil (12) and 3-[(S)-1-(1,3-dithian-2-yl)]propionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (13) in 10 and 90% yields, respectively. When 12 was kept in water or methanol for 7 days, quantitative conversion into 13 occurred. Acid hydrolysis of 12 afforded arabinose and 5,6-di-hydro-6-(1,3-dithian-2-yl)uracil (14), which was desulfurized with Raney nickel to the known 5,6-dihydro-6-methyluracil (15). Treatment of 13 with trifluoroacetic anhydride-pyridine yielded 77% of the cyano derivative 17. Similar dehydration of 3-(R)-1-methylpropionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxalidinone (18), obtained by desulfurization of 13, gave 60% of the nitrile 19. Hydrogenation of 19 over platinum oxide in acetic anhydride gave the acetamide derivative 20 in 95% yield. Nitrobenzoylation of 13 gave 3-[(S)-1-(1,3-dithian-2-yl)]cyanomethyl-3,5-di-O-p-nitrobenzoyl-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (22), which was converted in 37% yield by treatment with methyl iodide in dimethyl sulfoxide into the aldehyde 24, characterized as the semicarbazone 25. The purification of 5 and its characterization as 2-(1,4-di-O-p-nitrobenzoylbutyl)-1,3-dithiane (27) is described.  相似文献   

12.
The 1-methyl derivatives (3 and 4) of 3-(1-phenyl- (1) and 3-(1-p-bromophenylhydrazono-L-threo-2,3,4-trihydroxybutyl)-2-quinoxalinone (2) were prepared by methylation. Periodate oxidation of 3 gave 1-methyl-3-[1-(phenylhydrazono)glyoxal-1-yl]-2-quinoxalinone (5), which, on reduction with sodium borohydride, gave the corresponding 3-[2-hydroxy-1-(phenylhydrazono)ethyl] derivative (8). Reaction of 5 with hydroxylamine or benzoylhydrazine gave the corresponding 2-oxime (6) and 2-(benzoylhydrazone) (7), respectively. Acetic anhydride causes one molecule of 3 or 4 to undergo elimination of two molecules of water, with simultaneous acetylation and ring closure to afford pyrazoles 9 and 10, respectively. Pyrolysis of the triacetate of 3 led to the elimination of acetic acid from the sugar and the hydrazone residue, to give the 3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl] derivatives (9). Acetic acid was found to effect the same rearrangement, but without acetylation, of 1, 2, and 3 to give the 3-[5-(hydroxymethyl)] derivatives 11, 12, and 13, respectively. The structure of these pyrazoles was confirmed by a series of reactions, including methylation and acetylation. The n.m.r. and i.r. spectra of the compounds were investigated.  相似文献   

13.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

14.
Ethynylation of 1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose (1) gave the 3-C-ethynyl allo derivative 2, together with an adduct (3) resulting from interaction of two molecules of 1 with one of acetylene. Lithium aluminum hydride reduced the acetylenes 2 and 3 to the corresponding alkenes 4 and 8; on sequential ozonolysis-borohydride reduction, these both gave 3-C-(hydroxymethyl)-1,2:5,6-di- O-isopropylidene-α-D-allofuranose (6), further characterized as its 3,31-cyclic carbonate 9. Ozonolysis of the acetylene 2 gave the 31,5-lactone (5) of the 3-C-carboxy analog, thus establishing the stereochemistry of 2, which was independently established by n.m.r. spectroscopy employing a lanthanide shift-reagent. Treatment of 2 with mercuric acetate in ethyl acetate, followed by hydrogen sulfide, gave a mixture of the 3-C-acetyl-3-O-acetyl derivative 10 and a product (11) derived from internal cyclization of 5,6-deacetonated, O-deacetylated 10. Reduction of 10 with lithium aluminum hydride gave a separable mixture of diastereoisomeric 3-C-(l-hydroxy-ethyl) derivatives (12a, 12b) that were individually converted into their corresponding 3,31-cyclic carbonates 13a and 13b, products that contain the branch functionality of the unusual, branched-chain sugar aldgarose.  相似文献   

15.
d-erythro-2,3-Hexodiulosono-1,4-lactone 2-arylhydrazones (2) were prepared by condensation of dehydro-d-arabino-ascorbic acid with the desired arylhydrazine. Reaction of 2 with hydroxylamine gave the 2-arylhydrazone 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5,11-lactone (5), whereas the unacetylated triazole derivatives were obtained upon reaction of 3 with bromine in water. On treatment of 5 with hydrazine hydrate, 2-aryl-4-(d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides (6) were obtained. Acetylation of 6 gave the hexaacetyl derivatives. Similarly, treatment of 5 with liquid ammonia gave the triazolecarboxamides (12). Vigorous acetylation of 12 with boiling acetic anhydride gave tetraacetates, whereas acetylation with acetic anhydride-pyridine gave triacetates. Periodate oxidation of 6 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxylic acid 5-hydrazides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides, characterized as acetates. Similarly, periodate oxidation of 12 gave the triazolealdehyde (15), and reduction of 15 gave the hydroxymethyl derivatives (16). Acetylation of 16 gave the mono- and di-acetates, and, on reaction with o-phenylenediamine, 15 afforded the triazoleimidazole. Controlled reaction of 3 with sodium hydroxide, followed by neutralization, gave 3-(d-erythro-glycerol-1-yl)-4,5-isoxazolinedione 4-arylhydrazones. Reaction of 3 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-d-erythro-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3-oximes (21). Compounds 21 were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-d-erythro-glycerol-1-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,11-lactone on treatment with acetic anhydride.  相似文献   

16.
Treatment of benzyl 2-acetamido-3-O-benzyl-2,6-dideoxy-4-O-(methylsulfonyl)-α-D-glucopyranoside (1) with sodium azide in hexamethylphosphoric triamide gave the 4-azido-α-D-galacto derivative (2), which was converted into benzyl 2,4-di-acetamido-3-O-benzyl-2,3,6-trideoxy-α-D-galactopyranoside (3) by hydrogenation and subsequent acetylation. Hydrogenolysis of 3 at atmospheric pressure afforded benzyl 2,4-diacetamido-2,4,6-tridcoxy-α-D-galactopyranoside (4), which was acetylated to give the 3-O-acetyl derivative (5). The n.m.r. spectrum of 5 was in agreement with the assigned structure and different from that of benzyl 2,4-di-acetamido-3-O-acetyl-α-D-glucopyranoside (9), which was prepared from the known benzyl 2,4-diacetamido-3-O-benzyl-2,4,6-trideoxy-α-D-glucopyranoside. Catalytic hydrogenolysis of 4 gave 2,4-diacetamido-2,4,6-trideoxy-D-galactose (6).  相似文献   

17.
The synthesis of the title disaccharide derivative (1C), corresponding to the Salmonella O-factor 21, is described. Treatment of 2-O-benzyl-4-O-p-nitrobenzoyl-α-paratosyl bromide (5) with p-nitrophenyl 2-O-benzyl-4,6-O-benzylidene-α-d-mannoside in dichloromethane, in the presence of mercuric cyanide, gave the α- and β-linked disaccharide derivatives (6a and 6b) in yields of 34 and 5%, respectively. The disaccharide derivative 10 can react with free amino groups in proteins to produce artificial antigens useful in studies on Salmonella immunology.  相似文献   

18.
The reference standards methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10b) and corresponding precursors 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11b) were synthesized from methyl crotonate and 3-amino-4-methylbenzoic acid in multiple steps with moderate to excellent yields. The target tracer [11C]methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([11C]10a) and [11C]methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([11C]10b) were prepared from their corresponding precursors with [11C]CH3OTf under basic condition through O-[11C]methylation and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields at end of bombardment (EOB) with 185–555 GBq/μmol specific activity at end of synthesis (EOS).  相似文献   

19.
5,6-Dideoxy-6-C-nitro-5-(phenylphosphino)-d-glucopyranose was prepared by addition of phenylphosphine to 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-α-d-xylo-hex-5-enofuranose, followed by hydrolysis of the resulting 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-5-(phenylphosphino)-d-glucofuranose (10). Acetylation of 10 gave the crystalline 1,2,3,4-tetraacetate (16). 5,6-Dideoxy-6-C-nitro-5-(phenylphosphinyl)-d-glucopyranose (15) was obtained by oxidation of 10, and hydrolysis of the resulting 5-phenylphosphinyl compound. Acetylation of 15 gave the 1,2,3,4-tetraacetate (17). Although the n.m.r. spectrum of 17 was complex, the n.m.r. spectrum of 16 was rather simple. The n.m.r. data showed that 16 is the α anomer in the 4C1(d) conformation.  相似文献   

20.
The products (1) from the periodate oxidation of 1,2-O-isopropylidene-α-D-glucofuranose were converted by ethynylmagnesium bromide into a separable, 14:11 mixture of 6,7-dideoxy-1.2-O-isopropylidene-β-L-ido-hept-6-ynofuranose (2) and its α-D-gluco analog 3. These crystalline products were further characterized as their respective 3,5-diacetates (5 and 7) and 3,5-dibenzoates (4 and 6). Ozonolysis of 2 and 3 led to 1,2-O-isopropylidene-β-L-idofuranurono-6,3-lactone (8) and its α-D-gluco analog 9, respectively; similar ozonolysis of the dibenzoates 4 and 6, followed by treatment with diazomethane, gave methyl 3,5-di-O-benzoyl-1,2-O-isopropylidene-α-L-idofuranuronate (10) and its α-D-gluco analog 11, respectively. Diborane reduction of the ozonolysis products from 4 gave 1,2-O-isopropylidene-β-L-idofuranose (13) as its 3,5-dibenzoate (12), and a similar sequence was performed with 6. The propargylic alcohols 2 and 3 were reduced by lithium aluminum hydride, in high yield, to the allylic alcohol analogs 15 and 16, further characterized as their 3,5-dibenzoates 17 and 18; compounds 15 and 16 were also obtainable by vinylation of compounds 1. The two series of derivatives in this work, epimeric at C-5, were examined comparatively by polarimetry and p.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号