首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Three gold-containing thioneins (Au,Zn,Cd-Th, Au,Cd-Th, and (TmSAu)chi Th, where Th = thionein and TmS = thiomalate) have been prepared by the reactions of horse kidney Zn,Cd-thionein with gold thiomalate (AuSTm). When thionein was present in excess, the thiomalate ligand was displaced and the protein chelated the gold in a bidentate fashion. Primarily zinc but also some cadmium was displaced to form Au,Zn,Cd-Th or Au,Cd-Th. Excess AuSTm reacted to form (TmSAu)chi-thionein with monodentate coordination of the protein to each bound gold, retention of the thiomalate, loss of zinc and cadmium, and an increase in the Stokes radius of the product. EXAFS/XANES studies of Au,Zn,Cd-Th and (TmSAu)chi Th established that the oxidation states and coordination environments of gold were Au(I)S2 and that the gold-sulfur bond distances were 229 and 230 pm, respectively. Radioimmunoassay established that the aurothioneins retained their antigenicity to native metallothionein antibodies. Metal exchange reactions with gold were complete within 5-10 min when Zincon or 4-(2-pyridylazo) resorcinol was used to monitor Cd2+ and Zn2+ displacement.  相似文献   

2.
Transglutaminases (TGase), a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members.  相似文献   

3.
Thiols (RSH = 2,3,4,6-tetra-O-acetyl-beta-1-D-thioglucose, beta-1-D-thioglucose, and glutathione) can displace either the albumin or the triethylphosphine from the protein-gold complex, AlbSAuPEt3. The albumin is displaced in preference to triethylphosphine, but irreversible oxidation of the latter eventually shifts the equilibria toward Et3PO and AlbSAuSR. Albumin disulfide bonds are the probable oxidants. Neither O2 nor oxidized glutathione substantially enhanced the rate or extent of Et3PO formation. The labilization of the phosphine in AlbSAuPEt3 is attributed to a strong trans effect of the albumin thiolate, Cys-34. The 31P NMR chemical shifts of various thiolato(triethylphosphine)gold(I) complexes are correlated directly with the affinity of the thiols for gold and inversely with their pKSH values. Deacetylated auranofin (1-thio-beta-D-glucopyranosato-S) (triethylphosphine)gold(I) reacts with the mercaptalbumin and oxidized mercaptalbumin (putatively AlbSOH) forms of bovine serum albumin to form AlbSAuPEt3 with displacement of the thioglucose ligand.  相似文献   

4.
Gold thioglucose and gold sodium thiomalate were shown to be potent activators of latent human leukocyte collagenase. No activation by auranofin was noted. The activation may proceed through the action of gold on the essential sulfhydrylgroups of latent enzyme and, thereby, mimick the action of the known organomercurial activators.  相似文献   

5.
We have shown that chick macrophages express RANK at their surface and human RANKL (hRANKL) triggers the formation of osteoclasts able to degrade dentine. As described for mammalian osteoclasts, hRANKL also stimulates the resorbing activity of chick bone-derived osteoclasts. In other hands, in culture, chick macrophages spontaneously form polykaryons sharing most of the osteoclast markers but unable to resorb bone. Since both bone-resorbing osteoclasts and macrophage polykaryons found in inflammatory tissues are multinucleated cells deriving from the fusion of macrophages, we examined whether macrophage polykaryons could be induced toward bone-resorbing osteoclasts. Long-term exposure of macrophage polykaryons to hRANKL failed to activate any resorbing activity, indicating that although deriving from the same precursors macrophage polykaryons and osteoclasts are independent cell types and polykaryons are not immature osteoclasts.  相似文献   

6.
The nonionic 2'-O-methyribooligonucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, is complementary to the...ApCpC...sequence found in the amino acid accepting stem of most tRNAs and the anticodon region of tRNAgly and to the threonine codon of mRNA. Gmp(Et)Gmp(EtU forms hydrogen-bonded complexes with the amino acid accepting stem of tRNApheyeast and unfractionated tRNA Escherichia coli under physiological salt conditions at 37 degrees C as determined by equilibrium dialysis. The extent of phenylalanine aminoacylation of tRNApheE.coli is inhibited 39% by Gmp(Et)Gmp(Et)U at 37 degrees C in solution. The triester is resistant to hydrolysis by serum nucleases and cell lysates. The triester is readily taken up by transformed Syrian hamster fibroblasts growing in monolayer. Within the cell, the triester is deethylated to give the trinucleotide species Gmp(Et)GmpU, GmpGmp(Et)U, and GmpGmpU and is also hydrolyzed to dimeric and monomeric units. Treatment of transformed fibroblasts in monolayer with 25 micronM Gmp(Et)Gmp(Et)U results in a 40% inhibition of cellular protein synthesis with a concurrent slight increase in cellular RNA synthesis during the first 4 h. After 4 h, the rate of cellular protein synthesis begins to recover while RNA synthesis returns to that of the control. Our biochemical studies suggest that inhibition of cellular protein synthesis might be expected if Gmp(Et)Gmp(Et)UGmp(Et)GmpU, GmpGmp(Et)U, and GmpGmpU, which have been taken up by or formed within the cell, physically bind to tRNA and mRNA and inhibit the function of these nucleic acids. The reversible inhibition of protein synthesis may be a consequence of further degradation of the trinucleotide species within the cell as well as to an increase in supply of RNA molecules involved in protein synthesis. The growth of the transformed fibroblasts is inhibited during the first 24 h of incubation with 25 micronM Gmp(Et)Gmp(Et)U after which growth proceeds at a normal rate. In cloning experiments, the number and size of colonies formed by the transformed fibroblasts after 5 days exposure to 25 micronM triester is decreased by 50% relative to untreated controls. The temporary inhibition of cell growth may reflect the transitory inhibition of cellular protein synthesis caused by the triester.  相似文献   

7.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

8.
Was studied in vitro. The109Cd-labeled protein was isolated by gel filtration and incubated with a lysosomal extract from the same source. No degradation was seen when the pH of the incubation medium was 5 or higher, whereas the degradation of Cd-thionein was completed in 2 h at a pH of 4.5. Dissociation of Cd2+ from thionein, which takes place to a fair extent at a pH below 5, appears necessary before the enzymatic breakdown of the thionein moiety can take place.  相似文献   

9.
《Epigenetics》2013,8(6):366-369
Post-translational modifications of histones play key roles in the regulation of gene expression and chromatin structure in eukaryotes. Methylation of histone 3 on lysine 27 (H3K27) is one of the most common and well-studied histone post-translational modifications. The vast majority of research on this histone residue, however, has focused on the trimethylated form (H3K27me3). Despite occurring at higher levels than H3K27me3 in animals and plants, the monomethylated form of H3K27 (H3K27me1) remains relatively poorly characterized. The absence of information concerning H3K27me1 is due in large part to the fact that the enzymes catalyzing this epigenetic mark were only recently identified. In this article, we highlight new findings concerning H3K27me1, including the identification of two plant-specific H3K27 monomethyltransferases that are required for gene silencing and heterochromatin condensation. We also discuss the emerging similarities and differences in H3K27 methylation in plant and animal systems.  相似文献   

10.
Phagocytosis through Fcgamma receptor (FcgammaR) or complement receptor 3 (CR) requires Arp2/3 complex-mediated actin polymerization, although each receptor uses a distinct signaling pathway. Rac and Cdc42 are required for actin and Arp2/3 complex recruitment during FcgammaR phagocytosis, while Rho controls actin assembly at CR phagosomes. To better understand the role of Rho in CR phagocytosis, we tested the idea that a known target of Rho, Rho-kinase (ROK), might control phagocytic cup formation and/or engulfment of particles. Inhibitors of ROK (dominant-negative ROK and Y-27632) and of the downstream target of ROK, myosin-II (ML7, BDM, and dominant-negative myosin-II), were used to test this idea. We found that inhibition of the Rho --> ROK --> myosin-II pathway caused a decreased accumulation of Arp2/3 complex and F-actin around bound particles, which led to a reduction in CR-mediated phagocytic engulfment. FcgammaR-mediated phagocytosis, in contrast, was independent of Rho or ROK activity and was only dependent on myosin-II for particle internalization, not for actin cup formation. While myosins have been previously implicated in FcgammaR phagocytosis, to our knowledge, this is the first demonstration of a role for myosin-II in CR phagocytosis.  相似文献   

11.
Epidermal-type transglutaminase (TGase 3) is devoid of GTPase activity, but its TGase activity is inhibited by GTP as in the case of tissue-type TGase (TGase 2). In addition, the inhibition was not affected by the presence of higher concentrations of Ca ion. These results indicate that GTP interacts with TGase 3 in a manner different from its action on TGase 2.  相似文献   

12.
Cyclin B, the regulatory subunit of maturation-promoting factor (MPF), comprises several subtypes that are presumed to confer different functions on MPF although no direct evidence has been provided to date. To clarify the difference in the roles of cyclins B1 and B2, we used frog (Rana japonica) oocytes in which MPF is formed only after progesterone stimulation because it is possible to produce oocytes containing either cyclin B1-MPF or cyclin B2-MPF by antisense RNA-mediated translational inhibition of each mRNA. Using this advantage, we investigated the functions of cyclins B1 and B2 and obtained the following results: (a) oocytes synthesizing cyclin B2-MPF underwent meiosis I and II with formation of a bipolar spindle at each metaphase; (b) oocytes synthesizing cyclin B1-MPF formed a monopolar spindle at metaphase I and extruded an abnormal polar body; and (c) both oocytes underwent germinal vesicle breakdown (GVBD) and chromosome condensation. Immunocytochemical observations also revealed continuous localization of cyclin B2 on the spindle during meiosis. These results provide evidence of the requirement of cyclin B2, but not cyclin B1, for organizing the bipolar spindle, though either cyclin B1 or B2 is redundant for inducing GVBD and chromosome condensation.  相似文献   

13.
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.  相似文献   

14.
L-selectin-mediated leukocyte rolling has been proposed to require a high rate of bond formation compared to that of P-selectin to compensate for its much higher off-rate. To test this hypothesis, a microbead system was utilized to measure relative L-selectin and P-selectin bond formation rates on their common ligand P-selectin glycoprotein ligand-1 (PSGL-1) under shear flow. Using video microscopy, we tracked selectin-coated microbeads to detect the formation frequency of adhesive tether bonds. From velocity distributions of noninteracting and interacting microbeads, we observed that tether bond formation rates for P-selectin on PSGL-1 decreased with increasing wall shear stress, from 0.14 ± 0.04 bonds/μm at 0.2 dyn/cm2 to 0.014 ± 0.003 bonds/μm at 1.0 dyn/cm2. In contrast, L-selectin tether bond formation increased from 0.017 ± 0.005 bonds/μm at 0.2 dyn/cm2 to 0.031 ± 0.005 bonds/μm at 1.0 dyn/cm2. L-selectin tether bond formation rates appeared to be enhanced by convective transport, whereas P-selectin rates were inhibited. The transition force for the L-selectin catch-slip transition of 44 pN/bond agreed well with theoretical models (Pereverzev et al. 2005. Biophys. J. 89:1446-1454). Despite catch bond behavior, hydrodymanic shear thresholding was not detected with L-selectin beads rolling on PSGL-1. We speculate that shear flow generated compressive forces may enhance L-selectin bond formation relative to that of P-selectin and that L-selectin bonds with PSGL-1 may be tuned for the compressive forces characteristic of leukocyte-leukocyte collisions during secondary capture on the blood vessel wall. This is the first report, to our knowledge, comparing L-selectin and P-selectin bond formation frequencies in shear flow.  相似文献   

15.
In 3T3 cells stimulated from quiescence by serum, impaired thymidine incorporation caused by inadequate supply of Zn2+ was associated with both decreased thymidine kinase activity and a comparable decrease in its mRNA concentration. In contrast, the amount of mRNA for ribosomal protein S6 was not affected, nor was the earlier increase in the activity of ornithine decarboxylase.  相似文献   

16.
To provide 4-hydroxybutyryl-CoA for poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from glutamate in Escherichia coli, an acetyl-CoA:4-hydroxybutyrate CoA transferase from Clostridium kluyveri, a 4-hydroxybutyrate dehydrogenase from Ralstonia eutropha, a gamma-aminobutyrate:2-ketoglutarate transaminase from Escherichia coli, and glutamate decarboxylases from Arabidopsis thaliana or E. coli were cloned and functionality tested by expression of single genes in E. coli to verify enzymatic activity, and uniquely assembled as operons under the control of the lac promoter. These operons were independently transformed into E. coli CT101 harboring the runaway replication vector pJM9238 for polyhydroxyalkanoate (PHA) production. Plasmid pJM9238 contains the PHA biosynthetic operon of R. eutropha under tac promoter control. Polyhydroxyalkanoate formation was monitored by nuclear magnetic resonance (NMR) spectroscopic analysis of the chloroform extracted and ethanol precipitated polyesters. Functionality of the biosynthetic pathway for copolymer production was demonstrated through feeding experiments using various carbon sources that supplied different precursors within the 4HB-CoA biosynthetic pathway.  相似文献   

17.
The ability to identify individuals within a population is often essential for a detailed understanding of the ecology and conservation of a species. However, some species, including large parrots, are notoriously difficult to catch and mark for individual identification. Palm cockatoos (Probosciger aterrimus) are a large, poorly understood species of parrot which are likely in severe decline within the eastern part – and possibly the western part – of their range on Cape York Peninsula, Australia. Here, we investigated whether three different palm cockatoo call types are sufficiently individually distinctive to function as a non-invasive “marker” for identifying individuals over time. Using Discriminant Function Analysis, overall identification accuracy among 12 putative individuals for all call types was 81% (i.e. 148 out of 183 calls were assigned to the correct individual) on the basis of multiple temporal, energy (amplitude) and frequency measurements on the spectrogram. For three different call types, individual identification accuracy among males and females ranged from 69 to 95%. However, based on a limited sample sizes of five putative individuals between years, our data suggest that individual call structure, as quantified by call parameters, was not stable between years. We discuss the applicability of these results for future studies of palm cockatoos and other parrot species.  相似文献   

18.
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.  相似文献   

19.
We investigated phospholipid signal transduction, calcium flux, O2- anion production and actin polymerization after stimulation with the C fragment and chemoattractant, C5a, and then determined how C5a pretreatment affected subsequent responses to formyl peptide in human neutrophils. We have previously demonstrated that the novel lipids, phosphatidylinositol trisphosphate (PIP3) and phosphatidylinositol(3,4)P2 (PI(3,4)P2), rise transiently in neutrophils after activation with formyl peptide. Furthermore, the rise in PIP3 parallels actin polymerization. In this study, neutrophils activated with C5a exhibited two distinct G protein-dependent signal pathways involving different phosphoinositides: 1) [32P]PI(4,5)P2 hydrolysis and [32P]PA production, and 2) the transient formation of D-3-phosphorylated phosphoinositides, [32P]PIP3 and [32P]PI(3,4)P2. When neutrophils were preincubated with C5a for 5 min before stimulation with formyl peptide, [32P]PI(4,5)P2 hydrolysis was unchanged, and [32P]PA production and O2- formation were slightly enhanced compared with controls stimulated with formyl peptide in the absence of C5a. In contrast, [32P]PIP3 production, right angle light scatter, and actin polymerization were all reduced 35 to 40%. Therefore, these data support the hypothesis that PIP3 plays a role in chemotaxis but not superoxide formation.  相似文献   

20.
Increased serum levels of immunoreactive thromboxane B2 (iTXB2) were observed in spontaneously hypertensive rats of the Okamoto-Aoki strain (SHR) compared with normotensive Wistar-Kyoto rats (WKY). Serum iTXB2 levels in whole blood allowed to clot at 37 degrees C for 1 hour were significantly greater in SHR than WKY at 8, 16-20, and 38 weeks of age, whereas formation of iTXB2 by thrombin-stimulated whole platelets from 6 16-week-old SHR and 6 age-matched WKY was 399 +/- 44 and 377 +/- 38 ng/10(9) platelets/30 min, respectively. No significant difference in radioconversion of exogenous arachidonic acid to TXB2 was observed in whole platelets from SHR (18.2 +/- 2.5%, n = 4) and WKY (20.1 +/- 3.0%, n = 4) at 16 weeks of age. These results support the proposal that enhanced ability of blood from SHR to generate iTXB2 is independent of the stage of hypertension development. This enhancement probably depended on factors or blood elements other than platelets since no difference in formation was observed on stimulation of whole platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号