首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

2.
Rh(I), Ir(I), Pd(II) and Pt(II) metal complexes of bis(2-diphenylphosphino)ethyl)benzylamine(DPBA) and bis(2-diphenylarsino)ethyl)benzylamine (DABA) have been synthesized using various starting materials. Reaction of RhCl(CO)(AsPh3)2 with DPBA or DABA in methanol resulted in the formation of cationic complexes of the composition, [Rh(CO)(L)]Cl (L = DPBA or DABA). Interaction of [IrCl(COD)]2 with DPBA in benzene resulted in the formation of a neutral complex [IrCl(DPBA)]. Reaction of [PdCl2(COD)] with the ligand DPBA in benzene resulted in a cationic complex of the composition [PdCl(DPBA)]Cl. Interaction of [PdCl(DPBA)]BPh4 with SnCl2 gave the complex [Pd(SnCl3)(DPBA)]BPh4. The ligands DPBA and DABA react with PtCl2(COD) in acetone to give neutral, Pt(II) complexes of the type, [PtCl2L] (L = DPBA or DABA). All the complexes were fully characterized by elemental analysis, conductivity measurements, IR and far-IR and 31P{1H} NMR spectral data.  相似文献   

3.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF6)2 (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L1L2)] (PF6)3 (2) (where L1L2 = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant Kb has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 105 M?1 for (1) and 4.8 × 105 M?1 for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.  相似文献   

4.
Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML2 (L: monodeprotonated ligand corresponding to 2-acetyl-γ-butyrolactone thiosemicarbazone, HL1, and 2-furancarbaldehyde thiosemicarbazone, HL2) and also complexes with general composition MCl2(HL2) were synthesized (except [NiCl2(HL2)] and [Co(L2)2]). The interaction of CuCl2 with HL2 gave [CuCl(HL2)], a copper(I) complex. The ligands and metal complexes were characterized by IR, 1H and 13C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L2)2] · 2dmso was determined and a trans-square planar coordination of the two κ2-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as κ2-N,S chelates, except in the case of [Co(L1)2] in which HL1 is tridentate κ3-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL2 were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L1)2], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.  相似文献   

5.
[VIVO(acac)2] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [VVO(L1)(OCH3)(py)] (1) and [VVO(L2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [VVO(L3/L4)(OCH3)]2 complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their 1H NMR spectra. These quaternary VO3+ complexes are converted to the corresponding -complexes simply on refluxing them in acetone and to the -complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [VVO(L)(hq)] complexes in CHCl3.  相似文献   

6.
Complexes of type [M(tftb)2Ln] [M=Sr; n=1, L=tetraglyme (4), 2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp) (5), n=2, L=2,2-bipyridine-N,N (bipy) (6); M=Ba; n=1, L=tetraglyme (7), 2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp) (8); n=2, L=2,2-bipyridine-N,N (bipy) (9)] were prepared by in situ reactions of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htftb) (1) with M(OH)2 [M=Sr (2a); Ba (2b)] in the presence of the ancillary ligands L (3a: L=tetraglyme; 3b: L=2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp); 3c: L=2,2-bipyridine-N,N (bipy)) in aqueous ethanol. The compounds were obtained in high yields and characterized by elemental analysis, 1H NMR, mass spectrometry and IR analysis. Molecular structure of the [Sr(tftb)2(batcp)] (5) has been determined by X-ray single crystal analysis.  相似文献   

7.
Formamidines and formimidates (L = (p-MeC6H4 NH)(p-MeC6H4N=)CH; L′ = (p-MeC6H4N=) (EtO)CH are shown to yield metal complexes, not obtained directly before. The following complexes were characterized through spectral and magnetic data: L2Ag+, L2AgNO3, L2ZnBr2, L2CdBr2, L3Cd2Br4, LHgCl2, L2CoCl2, [LH]2[CoCl4], cis-(CO)2RhClL as well as L′2Ag+ and cis-(CO)2RhClL′. I.r. and n.m.r. spectra allow to distinguish these complexes from the derivatives of the isomer carbene ligands, (RNH)2C: and (RNH)(R′O)C:.  相似文献   

8.
A new class of asymmetric N-capped (dianionic/trianionic) tripodal proligands [Hx(Ln)] (x = 2, n = 1-6; x = 3, n = 7, 8) which possess pendant arms with N2OS, N2S2 or NOS2 donor groups and with different chelate ring sizes {5,5,5} or {5,6,5} has been prepared. Treatment of these ligands with [WO2Cl2(dme)] (dme = 1,2-dimethoxyethane) in the presence of base (triethylamine or KOH) leads to the formation of cis-dioxotungsten(VI) complexes of the types [WO2(Ln)] (n = 1-6) and K[WO2(Ln)] (n = 7, 8). Reaction of these tetradentate ligands with [MoO2(acac)2] (acac = acetylacetonate) gives the corresponding Mo(VI) analogues [MoO2(Ln)] (n = 1-6) and K[MoO2(Ln)] (n = 7, 8). Moreover, a new five coordinate dioxomolybdenum(VI) complex with an NS2 tridentate ligand [MoO2(L9)] has been synthesised using similar procedure. All these compounds have been spectroscopically characterised and the molecular structures of [MoO2(Ln)] (n = 2, 6) and [WO2(L6)] have been established by X-ray diffraction analysis. The electrochemistry and the catalytic activity for oxidation of allylic and benzylic alcohols of these dioxo complexes have also been investigated.  相似文献   

9.
Four Ru(II) polypyridyl complexes, [Ru(bpy)2(7-NO2-dppz)]2+, [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(phen)2(7-NO2-dppz)]2+, and [Ru(phen)2(7-CH3-dppz)]2+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), (7-Nitro-dppz = 7-Nitro dipyrido[3,2-a:2′-3′-c]phenazine, 7-CH3-dppz = 7-Methyl dipyrido[3,2-a:2′-3′-c]phenazine), have been synthesized and characterized by IR, UV, elemental analysis, 1H NMR, 13C-NMR, and mass spectroscopy. The DNA-binding properties of the four complexes were investigated by spectroscopic and viscosity measurements. The results suggest that all four complexes bind to DNA via an intercalative mode. Under irradiation at 365 nm, all four complexes were found to promote the photocleavage of plasmid pBR 322 DNA. Toxicological effects of the selected complexes were performed on industrially important yeasts (eukaryotic microorganisms).  相似文献   

10.
In an effort to better understand the biological efficacy of the tridentate aroyl hydrazone Cu(II) complexes, three Cu(II) complexes of acetylpyridine benzoyl hydrazone (HL), [Cu(L)(NO3) (H2O)]·H2O (C1), [Cu(L)2] (C2) and [Cu(L)(HL)]·(NO3)(Sas) (C3) (Sas = salicylic acid) were synthesized and characterized. X-ray crystal structures and infrared (IR) spectra of the complexes reveal that the L ligand of C1 and C2 are predominantly in the enolate resonance form, while one L ligand in C3 is represented enolate resonance form and the other HL ligand exhibits keto resonance form. All Cu(II) complexes showed significantly more anticancer activity than the ligand alone. Interestingly, the Cu complexes where the ligand/metal ratio was 1:1 (C1) rather than 2:1 (C2 and C3) had higher antitumor efficacy. Moreover, the 1:1 Cu/ligand complex, C1, promotes A549 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.  相似文献   

11.
Benzoylhydrazones and semicarbazones derived from 2,6-diacetylpyridine react with common dioxouranium(VI) compounds such as uranyl nitrate or [NBu4]2[UO2Cl4] to form air-stable complexes. 2,6-Diacetylpyridinebis(benzoylhydrazone) (H2L1), 2,6-diacetylpyridinebis(N4-phenylsemicarbazone) (H2L2) and the asymmetric proligand 2,6-diacetylpyridine(benzoylhydrazone)(N4-phenylsemicarbazone) (H2L3) give yellow products of the composition [UO2(L)]. The neutral compounds contain doubly deprotonated ligands and possess uranium atoms with distorted pentagonal-bipyramidal coordination spheres. The equatorial coordination spheres of the metal atoms can be extended by the addition of a monodentate ligand such as pyridine or DMSO. The uranium atoms in the resulting complexes have hexagonal-bipyramidal coordination environments with the oxo ligands in axial positions.X-ray diffraction studies on [UO2(L1)(DMSO)], [UO2(L2)], [UO2(L2)(DMSO)] and [UO2(L3)] show relatively short U-O bonds to the benzoylic oxygen atoms between 2.273(6) and 2.368(5) Å. This suggests a preference of these donor sites of the ligands over their imino and amine functionalities (U-N bond lengths: 2.502(7)-2.671(7) Å). The addition of a sixth ligand to the equatorial coordination sphere results in a lengthening of the metal-pyridine bonds.  相似文献   

12.
A new asymmetry ligand pibi (pibi = 2-(pyridine-2-yl)-1-H-imidazo[4,5-f]benzo[d]imidazolone) and its ruthenium complexes with [Ru(L)2(pibi)]2+ (L = bpy (2, 2′-bipyridine), phen (1, 10-phenanthroline)), have been synthesized and characterized. The binding of two complexes with calf thymus DNA has been investigated by spectroscopic and viscosity measurement. The results indicate that both complexes can bind to CT-DNA through intercalative mode. Under irradiation at 365 nm, both complexes can partly promote the photocleavage of plasmid pBR322DNA. The low singlet oxygen generation abilities of the two complexes may be the factor for the low DNA photocleavage abilities.  相似文献   

13.
Two new 3,5-dimethylpyrazolic derived ligands that are N1-substituted by diamine chains, 1-[2-(diethylamino)ethyl]-3,5-dimethylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-dimethylpyrazole (L2) were synthesised. Reaction of the ligands, L1 and L2, with [MCl2(CH3CN)2] yielded [MCl2(L)] (M = Pd(II), Pt(II)) complexes. These complexes were characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 195Pt{1H} NMR spectroscopies. The crystal structure of [PdCl2(L1)] was determined by single-crystal X-ray diffraction methods. The structure consists of mononuclear units. The Pd(II) atom is coordinated by a pyrazolic nitrogen, an amine nitrogen and two chlorine atoms in a cis disposition. In this structure, C-H?Cl, C-H?H-C and C-H?C-H intermolecular interactions have been identified.  相似文献   

14.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

15.
The action of [Co(X)(NO)2]2 (X = Cl, Br, L) on [V(H)(CO)6?nLn] (L = 1/ndi- and tritertiary phosphine; n = 2, 3) in thf yields [V(CO)5?n(NO)L2] and [V(NO)2(thf)4]X as the two main products. Thf is easilty replaced by other ligands L′, leading to the complexes cis-[V(NO)2(thf)4?nL′n]X, where n = 1 to 4. In the case of L′= CNR (R = Cy, iPr, tBu), the species [VX(NO)2L′3] are formed. The presence of X in the first coordination sphere is established by the normal halogen dependence (Cl < Br < I) of 51V shielding.δ(51V) values have been obtained for the two series of complexes and compared with δ of other nitrosylvanadium species, including [VX(NO)L′4]X. for [V(NO)2L′4]br, 51V shielding increases in the sequence {O} < {S} < NR3 < NCMe < AsEt3 < SbEt3 < PEt2Ph < P(OMe)3 < CNR, reflecting a general increase of shielding as the polarizability of the ligand function increases and its electronegativity decreases. Superimposed effects arising from electronic influences (PEtPh2) < PMe3 < P(OMe)3 and steric conditions (chelate-4 ring < 7 ring < 6 ring < 5 ring) are also discussed. Steric factors are especially pronounced in the [V(CO)3(NO)Ph2P(CH2)mPPh3] series (m = 1–4). The thermo-labile parent compound, [V(CO)5NO], has been characterized by its δ(51V) = ?1489 ppm at 245 K.  相似文献   

16.
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaldehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2′-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [VIVO(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [VVO(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of VIV → VV) in the synthesis of pentavalent complexes (5) and (6). [VIVO(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [VVO(L)(hq)] complexes are diamagnetic. The X-ray structure of [VVO(L2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by ∼0.07 Å and is identical with V-O (carboxylate) bond. 1H NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)-(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near −0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+E1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E1/2 increases in the order: (L2)2− < (L1)2−.  相似文献   

17.
《Inorganica chimica acta》2004,357(9):2543-2552
Ni(II), Co(II) and Co(III) complexes of imidazole- and pyrrole-2-carbaldehyde thiosemicarbazone ligands (H2L1 and H2L2, respectively) have been prepared. The X-ray crystal structures of [Co(L1)(HL1)], [Ni(H2L1)2]Cl2 · 3.5H2O and [Ni(HL2)2] have been solved. The Co(III) ion assumes a slightly distorted octahedral coordination geometry, involving both N2S binding domain of di- and monoanionic ligand molecules. Whereas in [Ni(HL2)2] the metal ion is tetracoordinated in a square planar geometry by two pyrrole-2-carbaldehyde thiosemicarbazone molecules acting as NS-donor, the spatial array of non deprotonated H2L1 ligand molecules in [Ni(H2L1)2]Cl2 · 3.5H2O is equivalent to that found for [Co(L1)(HL1)]. The in vitro antimicrobial properties of the ligands and their complexes were tested against representative bacterial and fungal strains in broth culture. The compounds H2L2 and [Co(L2)(HL2)(H2L2)] · 1.5H2O exhibit a moderate inhibitory effect on the microbial proliferation and only against some Gram positive bacteria.  相似文献   

18.
New molybdenum complexes were prepared by the reaction of [MoVIO2(acac)2] or (NH4)2[MoVOCl5] with different N-substituted pyridoxal thiosemicarbazone ligands (H2L1 = pyridoxal 4-phenylthiosemicarbazone; H2L2 = pyridoxal 4-methylthiosemicarbazone, H2L3 = pyridoxal thiosemicarbazone). The investigation of monomeric [MoO2L1(CH3OH)] or polymeric [MoO2L1-3] molybdenum(VI) complexes revealed that molybdenum is coordinated with a tridentate doubly-deprotonated ligand. In the oxomolybdenum(V) complexes [MoOCl2(HL1-3)] the pyridoxal thiosemicarbazonato ligands are tridentate mono-deprotonated. Crystal and molecular structures of molybdenum(VI) [MoO2L1(CH3OH)]·CH3OH, and molybdenum(V) complexes [MoOCl2(HL1)]·C2H5OH, as well as of the pyridoxal thiosemicarbazone ligand methanol solvate H2L3·MeOH, were determined by the single crystal X-ray diffraction method.  相似文献   

19.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

20.
Two Salen-type ligands (H2L1, 4,4′-dichloro-2,2′-[(1,3-propylene)dioxybis(nitrilomethylidyne)]diphenol and H2L2, 4,4′-dinitro-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) and their corresponding complexes ({[CoL1(MeOH)]2(OAc)2Co} · 2MeOH and [CuL2]2) have been synthesized and characterized by element analyses, 1H NMR, FT-IR and UV-Vis spectra, TG-DTA and single crystal X-ray crystallography. Crystallographic data suggests the octahedral geometry for Co(II) complex and square-pyramidal geometry for Cu(II) complex. Furthermore, the fluorescence behavior of Cu(II) complex in DMSO is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号