首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation between the helicity (absolute conformation) of the O-heterocyclic ring of chiral 2,3-dihydrobenzo[b]furan (1) and chromane (2) derivatives and their (1)L(b) band CD was investigated. The same helicity rule was found for both unsubstituted chromophores: P/M helicity of the heterocyclic ring leads to a negative/positive CD within the (1)L(b) band. While the substitution of the fused benzene ring by achiral substituents does not change this helicity rule for the chromane chromophore, it leads to its inversion for the 2,3-dihydrobenzo[b]furan chromophores. On the basis of these observations, the published absolute configurations of natural flavonol and pterocarpan derivatives were confirmed and the configurational assignments of several natural neolignans revised.  相似文献   

2.
We report on spectral features for two and three diphenylacetylene chromophores aligned in close proximity in aqueous solution by self assembly of attached oligonucleotide arms. Two duplex systems were examined in detail. One was formed by hybridization (Watson-Crick base pairing) of two oligonucleotide 10-mers, each containing the diphenylacetylene insert. The other was generated by self-folding of a 36-mer oligonucleotide containing two diphenylacetylene inserts. The triplex system was obtained by hybridization (Hoogsteen base pairing) of a 16-mer oligonucleotide diphenylacetylene conjugate to the folded 36-mer hairpin. Formation of duplex and triplex entities from these conjugates was demonstrated experimentally by thermal dissociation and spectroscopic studies. The UV and CD spectra for the duplex systems exhibit bands in the 300-350 nm region attributable to exciton coupling between the two chromophores, and the emission spectra show a strong band centered at 410 nm assigned to excimer fluorescence. Addition of the third strand to the hairpin duplex has little effect on the CD spectrum in the 300-350 nm region, but leads to a negative band at short wavelengths characteristic of a triplex and to a strongly enhanced band at 410 nm in the fluorescence spectrum. The third strand alone shows a broad fluorescence band at approximately 345-365 nm, but this band is virtually absent in the triplex system. A model for the triplex system is proposed in which two of the three aligned diphenylacetylenes function as a ground state dimer that on excitation gives rise to the exciton coupling observed in the UV and CD spectra and to the excimer emission observed in the fluorescence spectrum. Excitation of the third chromophore results in enhanced excimer fluorescence, as a consequence of energy transfer from the locally excited singlet of one chromophore to the ground state dimer formed by the other two chromophores.  相似文献   

3.
Circular dichroism (CD) spectroscopy was used for distinguishing different types of chiral interactions in host-guest complexes of achiral pyridino- and phenazino-18-crown-6 ligands with chiral aralkyl ammonium salts. The general feature of the CD spectra of many homochiral (e.g., (R,R)-host and (R)-guest) and heterochiral (e.g., (R,R)-host and (S)-guest) alpha-(1-naphthyl)ethylamine hydrogenperchlorate salt (NEA) complexes with chiral pyridino- and phenazino-18-crown-6 hosts is exciton interaction. The most interesting example is the coupling of the transitions of the chiral guest NEA with the energetically close transitions of the achiral phenazino-18-crown-6 host 6. The CD spectrum of the complex is predominated by exciton coupling between the (1)B(b) transition of the chiral guest and the (1)B(b) transition of the achiral host. The redshifted intense spectra of the complexes of (R)- or (S)-1-phenylethylamine hydrogenperchlorate salt (PEA) with the achiral diester-pyridino-18-crown-6 host 4 are indicative of merging the pi electron systems into one joint charge transfer chromophore. The appearance of weak bands with alternating sign in the spectrum of PEA complexes of the achiral "parent" pyridino-18-crown-6 host (1) indicates the presence of two or more conformers. The CD spectra of the complexes of achiral phenazino-18-crown-6 host 6 with PEA are also determined by pi-pi interaction. In addition to charge transfer bands, CD bands are also induced in the long-wavelength spectral region of the achiral host. The weak pi-pi interaction between the achiral phenazino-18-crown-6 host and methyl phenylglycinate hydrogenperchlorate (PGMA) or methyl phenylalaninate hydrogenperchlorate (PAMA) does not result in a definite spectral effect in the (1)L(a) region of the spectrum of the chiral guest, but its existence is proven by the weak CD bands induced in the long-wavelength spectral region of the achiral host.  相似文献   

4.
Tanaka K  Kato M  Toda F 《Chirality》2001,13(7):347-350
In order to measure the circular dichroism (CD) spectrum in the solid state of a chiral compound which has no chromophore, an induced CD spectral method was developed by measuring the spectrum of the inclusion crystal of the chiral compound with a simple achiral aromatic host compound in the Nujol mulls.  相似文献   

5.
Complexation of 2-(3′-benzoylphenyl)propionic acid (ketoprofen), 1 , to bovine serum albumin (BSA) results in an intense negative circular dichroism in the ketonic n → π* band of the benzoylphenyl moiety. This high CD contrasts with the weak CD of 1 -enantiomers dissolved in common solvents. Furthermore, a number of chiral and achiral molecules containing the benzophenone moiety are easily complexed to BSA: all these complexes show an intense CD at the same transition. To account for the observed CD intensities of the above molecules, it appears that BSA complexation markedly shifts the equilibrium between strongly asymmetric, antipodic conformers. Dissymmetry of these conformers is connected to the instability of a structure with phenyl rings coplanar to the carbonyl chromophore, as also indicated by molecular mechanics calculations. The magnification of the Cotton effects of the 1 -antipodes, due to the protein, can be used to measure the optical purity of 1 -samples with excellent precision. In contrast with BSA, human SA is unable to recognize the chirality of 1 -antipodes; oleic acid cocomplexation modifies this fact as well as other features of the binding. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Binding of the polyunsaturated cis-parinaric acid to bovine β-lactoglobulin (BLG) was studied by circular dichroism (CD), electronic absorption spectroscopy and mass spectrometry methods. Upon protein binding, the UV absorption band of parinaric acid is red shifted by ca. 5 nm, showing hypochromism and reduced vibrational fine structure, suggesting that the ligand binds as a monomer in non-planar geometry. In the CD spectra measured at pH 7.36 and 8.5 a strong, negative Cotton band appears centered at 310 nm (Δε=−25 M−1 cm−1) corresponding to the long-wavelength absorption band of cis-parinaric acid. The source of this induced optical activity is the helical distortion of the polyene chromophore caused by the chiral protein environment. From CD spectral data the value of the association constant was calculated to be 4.7×105 M−1 at pH 7.36. CD and mass spectrometry measurements showed that parinaric acid binds weakly to BLG in acidic solution, though small peaks at mass 18559 and 18645 can be obtained in the reconstructed electrospray mass spectrum; these correspond to the binding of parinaric acid in 1:1 stoichiometry to both monomer variants of BLG B and A. The hydrophobic interior cavity of BLG was assigned as the primary binding site of cis-parinaric acid.  相似文献   

7.
Resonance Raman spectra of the hydrogen out-of-plane (HOOP) vibrational modes in the retinal chromophore of octopus bathorhodopsin with deuterium label(s) along the polyene chain have been obtained. In clear contrast with bovine bathorhodopsin's HOOP modes, there are only two major HOOP bands at 887 and 940 cm-1 for octopus bathorhodopsin. On the basis of their isotopic shifts upon deuterium labeling, we have assigned the band at 887 cm-1 to C10H and C14H HOOP modes, and the band at 940 cm-1 to C11H = C12H Au-like HOOP mode. Except for a 26 cm-1 downward shift, the C11H = C12H Au-like wag appears to be little disturbed in octopus bathorhodopsin from the chromophore in solution since its changes upon deuterium labeling are close to those found in solution model-compound studies. We found also that the C10H and C14H HOOP wags are also similar to those in the model-compound studies. However, we have found that the interaction between the C7H and C8H HOOP internal coordinates of the chromophore in octopus bathorhodopsin is different from that of the chromophore in solution. The intensity of the C11H = C12H and the other HOOP modes suggests that the chromophore of octopus bathorhodopsin is somewhat torsionally distorted from a planar trans geometry. Importantly, a twist about C11 = C12 double bond is inferred. Such a twist breaks the local symmetry, resulting in the observation of the normally Raman-forbidden C11H = C12H Au-like HOOP mode. The twisted nature of the chromophore, semiquantitatively discussed here, likely affects the lambda max of the chromophore and its enthalpy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The calf thymus DNA (CT-DNA) and poly(dI-dC).poly(dI-dC) binding properties of the natural antitumor antibiotic CC-1065 and selected analogs of CC-1065 were studied by circular dichroism (CD) and absorbance methods. The results indicate that the intense long wavelength DNA-induced CD band of these molecules originates from a chiral electronic transition which is delocalized over the whole molecule. Both the covalently bound species (N-3 adenine adduct) and the reversibly bound species exhibit the characteristic spectral behavior of an inherently dissymmetric chromophore when these agents bind within the minor groove of B-form DNA. This mechanism of optical activity accounts for why CC-1065 shows a weak CD in buffer but a very intense induced CD at long wavelength when bound to DNA, why the intensity of the induced CD of CC-1065 analogs depends upon how many fused ring systems the analog contains, and why covalently bound analogs having the mirror image configuration of the natural configuration also exhibit an intense positive induced CD band at long wavelength.  相似文献   

9.
The biotin carboxyl carrier protein (BCCP) component of Escherichia coli acetyl coenzyme A carboxylase and three peptides derived from BCCP by proteolytic digestion have been examined by circular dichroism spectroscopy. BCCP, which has a peptide molecular weight of 22,500, has a spectrum typical of globular proteins with negative extrema at 222 nm and 208 nm. The two smallest peptides, BCCP(SC) and BCCP(9,100), with molecular weights of 8,900 and 9,100, respectively, exhibit unusual positive CD bands centered at 237 nm and 220 nm. BCCP(10,400), with a molecular weight of 10,400, has a CD spectrum intermediate between BCCP and that of the smallest peptides. Since d-biotin exhibits a positive CD band at 233 nm, it was suspected that the biotin prosthetic group might be the chromophore responsible for the 237 nm CD band seen in BCCP(SC) and BCCP(9,100). Enzymatic carboxylation of BCCP(SC) to form CO2-BCCP(SC) caused the CD spectrum to change with a shift of the 237 nm band to 232 nm. The positive CD band at 220 nm was unaffected by carboxylation of the biotin prosthetic group. These date suggest that the 237 nm signal may be due either to the biotin which acts as a chromophore directly or to a chromophore that is perturbed by the carboxylation of biotin. A spectropolarimetric titration was carried out to investigate the possible contribution of the single tyrosine residue of BCCP(SC) to the CD spectrum of this peptide. At pH values over 9 the CD spetrum changed with the disappearance of the 237 nm band, suggesting that tyrosine might contribute to this CD band. Denaturation of BCCP(SC) or BCCP(9,100) with 8 M urea of 6 M guanidine HCl abolished the positive CD bands and resulted in spectra typical of a random coil, whereas treatment of BCCP(SC) with 1% sodium dodecyl sulfate abolished the positive bands and left a spectrum exhibiting a shoulder at 222 nm and a negative band at 205 nm, suggestive of a high degree of ordered structure. It is concluded that the CD band at 237 nm in BCCP(SC) and BCCP(9,100) is prabably due to a noncovalent interaction of biotin with an amino acid residue(s) of the protein. It is suggested that the biotin prosthetic group is partially buried in the surface of the protein, rather than swinging free at the end of the lysine side chain through which it is covalently linked to the protein, to permit this interaction to occur.  相似文献   

10.
The ultraviolet absorbance and circular dichroism (CD) spectra of lecithin reverse micelles and gels were investigated in order to establish whether the formation of these noncovalent macromolecular aggregates, which was induced by the addition of water to solutions of lecithin in organic solvents, was accompanied by specific spectroscopic changes. Systems containing the synthetic short-chain lecithins, 1,2-hexanoyl-, 1,2-diheptanoyl-, 1,2-dioctanoyl-, and 1,2-dinonaoyl-sn-glycero-3-phosphatidylcholines were used as models for the long-chain lecithins, soybean phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine. All the molecules studied had asymmetric centres, formed reverse micelles under appropriate conditions, and, while both the long-chain lecithins also formed gels, none of the short-chain molecules did. As well as having CD spectra that were simpler to interpret, spectroscopic observations on solutions of the short-chain lecithins could be carried out over a large water content range. The ester chromophore of these compounds was shown to be highly sensitive to variation in both the solvent environment and the temperature, and components of both direct solvent effects and conformational change upon the addition of water were detected in the spectra. The spectra of the longer chain lecithins were complicated by the presence of double bonds although, here again, it was found that significant changes occurred as the water content increased, as monitored by the ester chromophore. However, no specific effect that could be ascribed to gelation alone was detected. The overall picture that emerged was that the ester chromophore of anhydrous micelles gave rise to a specific negative band in the CD spectrum (λmax ≈ 210 nm) whereas a positive CD signal (λmax ≈ 233 nm) was associated with the same chromophore in filled (i.e., hydrated) micelles. The two signals correspond to two different conformational states of the lecithin molecule, the hydrated state being not only more conformationally restricted but also providing a less polar environment for the ester groups, while the addition of water to the system shifts the conformational equilibrium. These observations have been interpreted as showing that only a limited range of lecithin conformation is compatible with the formation of the micellar structure and that it is this constraint, together with those introduced by the overall geometry of the aggregated state, that gives rise to the changes observed in the CD spectrum.  相似文献   

11.
Fluorescence lifetimes of 'large (mol. wt. 120,000) and 'small' (mol. wt. 60,000) phytochromes isolated from oat and rye seedlings grown in the dark have been measured at 199 K and 298 K. Phytochrome model compounds have also been studied by phase modulation fluorometrically at 77 K for comparison with lifetime data for phytochrome. It was found that the fluorescence lifetime of 'large' phytochrome was significantly shorter than that of 'small' phytochrome and its chromophore models. The phytochrome chromophore of Pr form has been analyzed by fluorescence polarization, CD, and molecular orbital methods. The fluorescence excitation polarization of 'small' phytochrome and the chromophore model in buffer/glycerol mixture (3 : 1, v/v) at 77 K is very hight (0.4) at the main absorption band and is negative (--0.1) and close to 0 in the near ultraviolet band, respectively. Analyses of the spectroscopic data suggest that the chromophore conformation of Pr and Pfr forms of phytochrome are essentially identical. The induced ellipticity of 'large' rye phytochrome in the blue and near ultraviolet regions was found to be significantly higher than that of 'small' phytochrome, indicating that the binding interaction between the phytochrome chromophore and apoprotein is much tighter in the former than in the latter. In addition, the excitation energy transfer does occur from Trp residue(s) to the chromophore in 'large' phytochrome but not in 'small' Pr. This illustrates one feature of the role played by the large molecular weight apoprotein in the binding site interactions and primary photoprocesses of Pr. Finally, a plausible model for the primary photoprocesses and the mechanism of phytochrome interactions triggered by the Pr leads to Pfr phototransformation have been proposed on the basis of the above results.  相似文献   

12.
F Livolant  M F Maestre 《Biochemistry》1988,27(8):3056-3068
Two highly condensed structures of DNA have been analyzed in the circular dichroism (CD) microscope: the cholesteric liquid-crystalline phase of DNA and the nucleus of a dinoflagellate (Prorocentrum micans). In both cases, the DNA shows a helical cholesteric organization, but the helical pitch equals about 2500 nm in the first case and 250 nm in the second one. Since the absorption band of DNA is located at 260 nm, the reflection and absorption bands are well separated in the cholesteric phase of DNA and are overlapping in the dinoflagellate nucleus. However, both structures give a very strong negative CD signal at 265 nm. We show that this very strong signal cannot correspond to a Borrmann effect, i.e., to a superposition of the absorption and reflection bands, but is a differential absorption of left versus right circularly polarized light. This anomalous differential absorption is probably due to a significant scattering of light, inside of the structure, which produces a resonance phenomenon in the absorption band of the chromophore. Therefore, for any helical structure containing a chromophore, the apparent CD can be expressed as CD = [(epsilon L - epsilon R)cl] + (psi L - psi R) + (SL - SR) The first term is true absorption and is located in the absorption band of the chromophore, and the last term is true scattering and is observed at the wavelength corresponding to the helical pitch of the structure. The second term (psi L - psi R) corresponds to the anomalous differential absorption observed in dense superhelical structures of DNA. It superimposes to the first term in the absorption band of the chromophore. psi L - psi R is a measure of the perfection of the helical structure and of the density of chromophores in the material. Intercalative dyes [ethidium bromide and meso-tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) and its nickel(II) derivative (NiIITMpyP-4)] were inserted in the dinoflagellate chromatin. The CD signal recorded in their absorption band mimics the signal observed in the absorption band of DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA molecules is left-handed, and we show that this situation is the most frequently encountered in vivo and vitro.  相似文献   

13.
A semiempirical theory of saccharide optical activity indicates that the dominant source of NaD rotation is a vacuum-uv CD band near 150 nm, a band observed experimentally in polysaccharide film CD spectra. The model is a modification of polarizability theory in which high-energy electronic excitations are coupled by degenerate perturbation theory, giving rise to “molecular excitons.” The existence of an excitation mode well separated in energy from even higher energy modes arises from the local symmetry of tetrahedral carbon atoms in a puckered ring structure. Calculated NaD rotations correlate well with experimental values.  相似文献   

14.
Amora TL  Ramos LS  Galan JF  Birge RR 《Biochemistry》2008,47(16):4614-4620
Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11- cis-retinal) or A2 (11- cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6- s- cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6- s- trans geometry red shifts M/LWS A1 pigments by approximately 1500 cm (-1) ( approximately 50 nm) and A2 pigments by approximately 2700 cm (-1) ( approximately 100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6- s- trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites.  相似文献   

15.
We observed optical rotation of the plane of polarization of the second harmonic (SH) radiation at 532 nm (in resonance with the retinal absorption) generated in reflection geometry in Langmuir-Blodgett film of bacteriorhodopsin (bR). The analysis of the experimental data showed that this effect arises from the nonvanishing contribution of the antisymmetrical part of the hyperpolarizability tensor. This requires that the dipole moment of the resonant electronic transition, the change of the dipole moment upon electronic excitation, and the long axis of the retinal not be coplanar. Such conditions are satisfied only if the retinal has a nonplanar geometry, a conclusion that could lend support to the heterogeneity model of the origin of the biphasic band shape of the linear CD spectrum of the retinal in bR. On the basis of our theoretical analysis, we were able to estimate the angle between the induced dipole moment and the plan that contains the long axis of the chromophore and the transition dipole moment of the retinal absorption.  相似文献   

16.
The visible circular dichroism (CD) spectrum of an R-phycoerythrin (Porphyra tenera) is composed of several positive bands. The protein in aqueous buffer very slowly exhibits changes in the CD spectrum of its chromophores, a band at 489 nm undergoes an increase in intensity and a red shift. When the band reached a 493 nm maximum, the spectrum became very stable. The aggregation state of the protein did not change during this spectral conversion. The chromophore CD spectrum was also obtained in the presence of a low concentration of urea or sodium thiocyanate, and the identical change in the CD was noted, but the change was much faster. The visible absorption and CD in the far UV spectra were unaffected by urea. Unchanged visible absorption and protein secondary structure (61% alpha helix) contradicted by comparatively salient alterations in the visible CD spectra suggested very subtle structural changes are influencing some of the chromophores. For a second R-phycoerythrin (Gastroclonium coulteri), the CD of the chromophores had a negative band on the blue edge of the spectrum. This is the first negative CD band observed for any R-phycoerythrin. Treatment of this protein with low concentrations of urea produced a change in the visible CD with the negative band being completely converted to a positive band. Fluorescence studies showed that the treatment by urea did not affect energy migration. Deconvolution of the CD spectra were used to monitor the chromophores. The results demonstrated that the same aggregate of each R-phycoerythrin could exist in two conformations, and this is a novel finding for any red algal or cyanobacterial biliprotein. The two forms of each protein would differ in tertiary structure, but retain the same secondary structures.  相似文献   

17.
C A Bush  S K Sarkar  K D Kopple 《Biochemistry》1978,17(23):4951-4954
Circular dichroism (CD) spectra are reported for two groups of cyclic hexapeptides having beta turns whose geometry can be firmly established by X-ray crystallography and by NMR spectroscopy. One series contains the sequence L-Pro-D-Phe in the geometry of the classical type II beta turn, while the second group has the sequence D-Phe-L-Pro in the closely related geometry of the gramicidin S turn. CD data on the hydrogenated peptides show that in neither series do Cotton effects due to the aromatic phenylalanyl chromophore make a significant contribution to the spectra in the 195--240-nm region. In spite of the close geometric similarity of the beta turns of these two groups of peptides, their CD spectra are quite distinct. Furthermore, comparison of our data with the CD spectra of published models for beta-turn structures suggests that it may not be possible to characterize the contribution of all beta turns to the CD spectra of proteins by a single model curve. the CD spectra of model beta turns will be more useful in characterizing the folding of oligopeptides and sequence polypeptides, where a single type of turn is present.  相似文献   

18.
Circular dichroism (CD) and absorption spectra of squid (Todarodes pacificus) rhodopsin, isorhodopsin and the intermediates were measured at low temperatures. Squid rhodopsin has positive CD bands at wavelengths corresponding the - and β-absorption bands at liquid nitrogen temperature (CD maxima: 485 nm at -band and 348 nm at β-band) as well as at room temperature (CD maxima: 474 nm at -band and 347 nm at β-band). The rotational strength of the -band has a molecular ellipticity about twice that of cattle rhodopsin. The CD spectrum of bathorhodopsin displays a negative peak at 532 nm, the rotational strength of which has an absolute value slightly larger than that of rhodopsin. The reversal in sign at -band of the CD spectrum may indicate that the isomerization of retinal chromophore from twisted 11-cis form to twisted 11-trans form has occurred in the process of conversion from rhodopsin to bathorhodopsin. Lumirhodopsin has a small negative CD band at 490 nm, the maximum of which lies at 25 nm shorter wavelengths than the absorption maximum (515 nm), and a large positive CD band near 290 nm, which is not observed in rhodopsin and the other intermediates. This band may be derived from a conformational change of the opsin. In the process of changing from lumirhodopsin to LM-rhodopsin, the CD bands at visible and near ultraviolet regions disappear. Both alkaline and acid metarhodopsins have no CD bands at visible and near ultraviolet regions.  相似文献   

19.
The autoxidation of tetralin is treated as a model reaction system to define the applicability of stereospecific autocatalysis. This concept, predicting a spontaneous amplification of enantiomeric excess generated by an autocatalytic chemical reaction, is used in several theoretical models as an explanation for the origin of natural optical activity. The reaction system investigated obeys the basic criteria of these models: a chiral intermediate (tetralin hydroperoxide) is produced from an achiral substrate (tetralin) via an autocatalytic pathway where the feedback mechanism is expected to generate a state of broken chiral symmetry. In order to test the amplification capacity of this reaction a computer analysis of the kinetic scheme is performed. This simulation is derived from the known kinetic scheme of autoxidation and is validated by fitting the experimentally observed data of hydroperoxide evolution. Calculations show that this model allows powerful amplification of enantiomeric excess and a transient amplification of the optical rotation. It is also demonstrated that the model system exhibits pronounced sensitivity toward any loss of absolute configuration of the involved chiral species. Since an amplification effect results exclusively at a high degree of stereoselectivity, it is concluded that stereospecific autocatalysis is possible in systems which show template reactions, crystallization, or colloidal effects. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The interaction of AMSA with nucleic acids was studied by several techniques. Melting temperature and CD studies equally suggest that AMSA-binding is interfering with the secondary structure of DNA. An overlap by two mechanism of binding seems to exist. Based on the CD measurements at low drug concentration intercalation is the most likely way of binding. At higher drug concentration stacking interaction predominates leading to cooperativity and formation of oriented sheets of aromatic ring-systems as reflected in the optical activity induced in the metachromatic band of the achiral drug. No base-pair specificity could be confirmed; however, a high affinity of AMSA to poly(A) chains was demonstrated. The CD measurements did not indicate any significant interaction with RNA. The selectivity of the AMSA-DNA interaction can be regarded as an important argument in favour of the role of this interaction in the anti-tumour effect of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号