首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Carbohydrate research》1986,153(1):69-77
A d-galacto-d-mannan ([α]D +72.0 and d-galactose-to-d-mannose ratio 1:1.14) was isolated from the seeds of Melilotus indica All., syn. M. parviflora Desf. The 1H- and 13C-n.m.r., and i.r. spectra indicated the presence of α-d-galactopyranosyl and β-d-mannopyranosyl residues. Methylation of the polysaccharide, followed by hydrolysis, afforded, 2,3,4,6-tetra-, 2,3,6-tri-, 2,3-di-, and 3,4-di-O-methyl-d-mannose, and 2,3,4,6-tetra- and 2,3,6-tri-O-methyl-d-galactose in the molar ratios of 1:2:22:6:27:3. Periodate oxidation of the polysaccharide, followed by reduction and hydrolysis, gave erythritol (1 mol) and glycerol (1.24 mol). Partial acid hydrolysis of the polysaccharide afforded O-β-d-mannopyranosyl-(1→2)-d-mannopyranose, O-β-d-mannopyranosyl-(1→4)-d-mannopyranose, O-α-d-galactopyranosyl-(1→6)-d-mannopyranose, O-α-d-galactopyranosyl-(1→4)-d-galactopyranose, and O-α-d-galactopyranosyl-(1→6)-O-β-d-mannopyranosyl-(1→4)-d-mannopyranose. A highly branched structure having a mannan backbone composed of 36% of (1→4)- and 10% of (1→2)-linked β-d-mannopyranosyl units is proposed for the galactomannan.  相似文献   

2.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

3.
A water-soluble galactomannan (C-3), [α]D20 +30°, isolated from the rod-like ascocarps of Cordyceps cicadae, was determined to be homogeneous, and the molecular weight was estimated by gel filtration to be 27,000. The polysaccharide is composed of d-mannose and d-galactose in the molar ratio of 4:3. The results of methylation analysis, Smith degradation, stepwise hydrolysis with acid, and 13C-n.m.r. spectroscopy indicated that the polysaccharide is of highly branched structure, and composed of α-d-(1→2)-linked and α-d-(1→6)-linked mannopyranosyl residues in the core; some of these residues are substituted at O-6 and O-2 with terminal β-d-galactofuranosyl and α-d-mannopyranosyl groups, and with short chains of β-d-(1→2)-linked d-galactofuranosyl units.  相似文献   

4.
The 13C.n.m.r spectra of water-soluble and -insoluble glucans synthesized by enzymes isolated from six strains of Streptococcus mutans are interpreted. The glucans are shown to be composed primarily of α(1→3)- and α-(1→6)-linked glucosyl residues, and the relative abundance of each linkage is estimated from peak areas. Treatment of water-insoluble glucans with dextranase is found to result in water-soluble and -insoluble products, the former enriched in α-(1→6)-linkages and the latter in α-(1→3)-linkages. The structural conclusions arrived at by 13C-n.m.r. spectroscopy are consistent with data from methylation analysis and 1H-n.m.r. spectroscopy.  相似文献   

5.
Selective, double irradiation allows the assignment of most 13C-n.m.r. signals in a series of per-O-acetyl disaccharides composed of two D-glucose residues linked α-(1→3), β-(1→3), α-(1→4), β-(1→4), α-(1→6), β-(1→6), and α,α-(1→1). The main influences that affect the chemical shifts are discussed and the spectra of β-cellobiose octaacetate and β-maltose octaacetate are compared to those of cellulose and amylose triacetate, respectively, to show the possibilities and limitations of a disaccharide model for the interpretation of the 13C-spectrum of a polymer.  相似文献   

6.
Partial hydrolysis with acid, methylation analysis (including uronic acid degradation), Smith degradation, and p.m.r. spectroscopy have been used to determine the primary structure of the capsular polysaccharide of Klebsiella serotype k64. The hexasaccharide repeating-unit, which also contains one O-acetyl substituent, comprises a 4)-α-d-GlcpA-(1 → 3)-α-d-Manp-(1 → 3)-β-d-Glcp-(1 → 4)-α-d-Manp-(1 → chain with a 4,6-O-(l-carboxyethylidene)-β-d-glucopyranosyl and an l-rhamnosyl group attached to the 4-linked d-mannosyl residue at O-2 and O-3, respectively.  相似文献   

7.
The structure and conformation of lentinan, an anti-tumor, branched (1→3)-β-d-glucan from Lentinus edodes, and its acid-degraded, lower molecular-weight fractions have been investigated by 13C-n.m.r. spectroscopy. It is found that their 13C-n.m.r. spectra are considerably changed, depending on the molecular weight. The conformational behavior as studied by 13C-n.m.r. spectroscopy is consistent with that revealed by a study of the shift in the absorption maximum of Congo Red complexed with lentinan and its acid-degraded fractions. It is found that the water-soluble fraction II (mol. wt. 3,640) gives rise to well-resolved 13C-n.m.r. spectra; the 13C-signals are assigned to (1→3)-β-d-glucan and branch points at C-6. The branched structure is also confirmed by examination of the 13C-n.m.r. spectra of the compounds in dimethyl sulfoxide. For the gel state of the fractions of higher molecular-weight, lentinan (mol. wt. 1,000,000) and fraction IV (mol. wt. 16,200), however, 13C-n.m.r. spectra of considerably attenuated signal-amplitude are observed. The fact that the 13C-signals of the β-d-(1→3)-linked main chain and side chains are completely suppressed is explained as a result of immobilization caused by their taking an ordered conformation. The 13C-resonances observed in the gel state, which are assigned to β-d-(1→6)-linkages, are unequivocally assigned to the side chains (of disordered conformation). Finally, the ordered conformation of both the β-d-(1→3)-linked main chain and side chains is identified as the single-helix conformation, which tends to form multiple helixes as junction zones for gel structure.  相似文献   

8.
A water-soluble glucan, [α]2D +217° (water), and an alkali-soluble glucan,
+152° (sodium hydroxide), have been isolated from the oak lichen Evernia prunastri (L.) Ach. On the basis of methylation analysis, periodate oxidation, and partial acid hydrolysis, the water-soluble polysaccharide has been shown to be a neutral, slightly branched glucan with a main chain composed of (1→3)- and (1→4)- linked glucopyranose residues in the ratio 1?:1. Branching occurs most probably at position 2 of (1→4)-linked glucopyranose residues. On the basis of optical rotation and i.r. spectral data, and enzymic hydrolysis, the α-D configuration has been assigned to the glycosidic linkages. Likewise, the alkali-soluble polysaccharide was shown to be a neutral, branched glucan with a main chain composed of (1→3)- and (1→4)-linked α-D-glucopyranose residues in the ratio 6:1. Each of the (1→4)-linked units was a branch point involving position 6. The presence of some β-D linkages is not excluded since hydrolysis with β-D-glucosidase occurred to a small extent.  相似文献   

9.
The p.m.r. spectra of mono-, di-, tri-, tetra-, and penta-galactopyranuronic acids (1–5), the corresponding fully esterified methyl esters (6–10), the partly esterified di- (11) and tri-galactopyranuronic acids (12, 13), and the unsaturated di-, tri-, and tetra-galactopyranuronic acids (14–16) were measured on solutions in D2O at 220 MHz at a pH of 1 and 6. Observation of doublets (J 4 Hz) in the range δ 4.90–5.05 p.p.m. indicates the site of esterification in the non-reducing or reducing sugar residue. Esterification of the sugar residue at the non-reducing end can be deduced from both the presence of a methyl resonance peak at δ 3.80 and the indifference of the signal at δ 4.35 (H-4) to the change in pH. The δ values and coupling constants confirm that all the d-galacturonic acid residues have the CI conformation and are α-(1→4)-linked. In the unsaturated oligogalactopyranuronic acids, the double bond is located between C-4 and C-5 of the sugar unit at the non-reducing end. The 4-deoxyhex-4-enopyranosyluronic acid residue occurs in the 2H1(d) conformation. Compound 11 was identified as O-(α-d-galactopyranosyluronic acid)-(1→4)-(methyl α,β-d-galactopyranuronate). Compounds 12 and 13 each consisted of a mixture of the three possible isomers; preference for the site of esterification decreases in the order reducing sugar unit, non-reducing sugar unit, sugar unit at the non-reducing end.  相似文献   

10.
《Carbohydrate research》1987,165(1):31-42
Hypocotyl cell walls contain galactans and arabinans that are soluble in boiling water. During maturation, the Ara/Gal ratio remains unchanged but high-molecular-weight galactans are replaced by smaller polymers. On the basis of the 1H-n.m.r. 2D-COSY(δ-δ, 1H-1H)n.m.r., and 13C-n.m.r. spectra, a (1→5)-α-Araf structure can be proposed for the arabinans in both young and nature cell walls. However, the galanctan(s) changed from a probably highly branched to an unbranched (1→4)-β-Galp structure during maturation.  相似文献   

11.
12.
Various di- and tri-saccharides containing l-rhamnose were synthesized by condensation of 2,3,4-tri-O-acetyl- or 2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl bromide with an unblocked glycopyranoside. The determination of the anomeric configuration of l-rhamnose saccharides by n.m.r. is difficult because structure has a greater effect on the spectra than does configuration. The α and β configurations and the position of the substitution may be assigned from the chemical shifts of H-5 and CH3. In all the compounds having a β configuration, a shielding of the methyl group and a deshielding of the H-5 proton have been observed as compared to the compounds having an α configuration. The H-5 proton and the methyl group of peracetylated, (1→3)-linked α-l derivatives always resonate at higher fields than the corresponding protons of (1→6)-linked α-l derivatives.  相似文献   

13.
13C-N.m.r. spectra of thirteen xylo-oligosaccharides [a complete series of α- and β-d-xylopyranosyl derivatives of methyl α-d-xylopyranoside, β-d-xylopyranosyl derivatives of methyl 4-O-β-d-xylopyranosyl-d-xylopyranoside, methyl O-α-d-xylopyranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranoside, and a branched methyl β-xylotetraoside] have been interpreted. The data obtained have been used for the carbon signal assignment in the spectra of a number of red-algal xylans. 13C-N.m.r. spectroscopy is shown to be a rapid and convenient method for the structural analysis of xylose-rich polysaccharides.  相似文献   

14.
The structure of tobacco arabinoxyloglucan has been further studied by methylation analysis, by 1H-, and 13C-n.m.r., and by fd. mass spectrometry, after complete digestion by cellulase. The results showed the polysaccharide molecule to be composed of two parts; a hexasaccharide component (AraXyl2Glc3, 1) and an unsubstituted (1→4)-β-d-glucan region (4-O-linked glucosyl residues) in the molar ratio of ~ 1:2. Some heterogeneities of this structure in the arabinofuranosyl sub-group were also found.  相似文献   

15.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

16.
The endosperm of the seed of Gleditsia triacanthos contains 4.8% of 85% ethanol-soluble, galactomannan-like oligosaccharides having Man:Gal ratios of 1.5–2.6:1 and an average degree of polymerization of 15. They have a narrow distribution of molecular weights and of ratio of components. The oligosaccharides have the gross structure accepted for the galactomannans, namely, a β-(1→4)-linked d-mannopyranosyl backbone having single stubs of α-(1→6)-linked d-galactopyranosyl groups. Some of the lateral chains contain more than one unit, and a minor proportion of the branches are ended by arabinofuranose or fucopyranose residues. Unusual branching points formed by 3,4-linked d-mannosyl, or 3,6-linked d-galactosyl units, or both, were also found. Despite their low molecular weight, the oligosaccharides form aggregates with a structure similar to that of the aggregates of the related galactomannans, but having a lower association energy. This fact, together with the difficulty of combining with more than one partner (due to the short, central chain), results in an increased solubility and in nonviscous solutions. The 13C-n.m.r. spectrum differentiated clearly the five structural units of the oligosaccharides, namely, the reducing and nonreducing end-chains of the d-mannosyl backbone; substituted and nonsubstitued, internal β-(1→4)-linked mannopyranosyl units of the backbone; and the galactosyl nonreducing end-chain of the lateral chains. The C-4 signal of the (1→4)-linked d-mannose and the C-6 signal of the same, but substituted, units showed splitting into three lines. The first has been attributed to sequence-related heterogeneity, whereas the latter is tentatively explained by assuming that this resonance is sensitive to whether the mannosyl units linked to that residue are also branched, or not.  相似文献   

17.
The viscometric constants a and Km in the Mark-Houwink equation have been determined for chitosan in 0.1 m acetic acid 0.2 m sodium chloride solution, using the approach of Sharples and Major. The number-average molecular weights were determined by absorbance measurements on solutions of the phenylosazone derivatives. The values obtained a = 0.93, Km = 1.81 × 10?3 cm3 g1 differ considerably from those reported previously by Lee but are in agreement with values found for other ionic polysaccharides having related β-(1 → 4)-linked structures.  相似文献   

18.
Two classes of neutral polysaccharide which could not be separated from each other by conventional methods were isolated from the fungus, Lampteromyces japonicus, by affinity chromatography using concanavalin A-Sepharose. The polysaccharide retained on the concanavalin A-Sepharose column was eluted with 0.05 M methyl α-d-mannopyranoside and appeared to be α-mannan, while that which passed through the column was virtually all β-glucan.Both polysaccharides were subjected to Smith-type degradation, methylation, acetolysis and glucosidase treatment. The results indicated that the α-mannan contained predominantly α-(1 → 2)-linked side chains branching from an α-(1 → 6)-linked backbone at the (1 → 2,6)-linked mannopyranosyl residues. Galactose was attached to approximately one-quarter of the non-reducing mannose terminals. The β-glucan seemed to contain mainly (1 → 6)-linked side chains branching from a (1 → 3)-linked backbone at the (1 → 3,6)-linked glucopyranosyl residues.  相似文献   

19.
Structural investigation of the capsular polysaccharide from Klebsiella K type 63 by methylation analysis, periodate oxidation, and uronic acid degradation showed the repeating unit to consist of →3)-α-D-Galp-(1→3)-α-D-GalpA-(1→3)-α-L-Fucp(1→. This structure is identical to that of Escherichia coli serotype K-42 capsular polysaccharide. The 1H- and13C-n.m.r. spectra of the original and modified polysaccharide are consistent with the foregoing structure.  相似文献   

20.
The 8-methoxycarbonyloctyl glycoside of the tetrasaccharide hapten, O-α-l-rhamnopyranosyl-(1→2)-O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→ 3)-2-acetamido-2-deoxy-β-d-glucopyranoside and the trisaccharide glycoside 8-methoxycarbonyloctyl O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyr-anosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranoside were synthesized by sequential Koenigs-Knorr reactions from monosaccharide units. The tetrasaccharide represents the complete skeletal repeating unit of Shigella flexneri serogroup Y lipopolysaccharide. Both oligosaccharide haptens are functionalized for covalent attachment to proteins, cell surfaces, and solid supports. 1H-N.m.r. evidence for the conformations of these oligosaccharides in solution is presented and shown to be consistent with predictions based on the exo-anomeric effect  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号