首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the post-activation performance enhancements (PAPE) induced by a high-intensity single set of accentuated eccentric isoinertial resistance exercise on vertical jump performance. Twenty physically active male university students performed, in randomized counterbalanced order, two different conditioning activities (CA) after a general preestablished warm-up: a conditioning set of 6 maximum repetitions at high intensity (i.e., individualized optimal moment of inertia [0.083 ± 0.03 kg·m-2]) of the flywheel half-squat exercise in the experimental condition, or a set of 6 maximal countermovement jumps (CMJ) instead of the flywheel exercise in the control condition. CMJ height, CMJ concentric peak power and CMJ concentric peak velocity were assessed at baseline (i.e., 3 minutes after the warm-up) and 4, 8, 12, 16 and 20 minutes after the CA in both experimental and control protocols. Only after the experimental protocol were significant gains in vertical jump performance (p < 0.05, ES range 0.10–1.34) at 4, 8, 12, 16 and 20 minutes after the CA observed. In fact, the experimental protocol showed greater (p < 0.05) CMJ height, concentric peak power and concentric peak velocity enhancements compared to the control condition. In conclusion, a single set of high-intensity flywheel training led to PAPE in CMJ performance after 4, 8, 12, 16 and 20 minutes in physically active young men.  相似文献   

2.
Manufacturers recommend that linear position transducers (LPTs) should be placed on the side of a barbell (or wooden dowel) to measure countermovement jump (CMJ) height, but the validity and reliability of this placement have not been compared to other attachment sites. Since this recommended attachment site is far from the centre of mass, a belt attachment where the LPT is placed between the feet may increase the validity and reliability of CMJ data. Thirty-six physical education students participated in the study (24.6 ± 4.3 years; 177.0 ± 7.7 cm; 77.2 ± 9.0 kg). Parameters from the two LPT attachments (barbell and belt) were simultaneously validated to force plate data, where the nature of bias was analysed (systematic vs random). The within-session and between-session reliability of both attachment sites were compared to force plate data using a test-retest protocol of two sets of 5 CMJs separated by 7 days. The LPT provided highly reliable and valid measures of peak force, mean force, mean power, and jump height, where the bias was mostly systematic (r2 > 0.7; ICC > 0.9). Peak velocity, mean velocity, and peak power were in very good agreement with the force plate and were highly reliable (r2 > 0.5; ICC > 0.7). Therefore, both attachment sites produced similar results with a systematic bias compared to force plate data. Thus, both attachment sites seem to be valid for assessing CMJs when the measuring tool and site remain consistent across measurements. However, if LPT data are to be compared to force plate data, recalculation equations should be used.  相似文献   

3.

Purpose

The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day.

Methods

Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]).

Results

The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed.

Conclusion

Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height.  相似文献   

4.
There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean±SD: Age 41±7y, Height 1.80±0.04 m, Weight 78.9±4.1 kg, VO2 max 58±3 ml•kg−1•min−1) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (∼5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35±1.53, 38.27±1.80, 40.23±1.98, 40.31±1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294±21 W, 291±22 W, 277±14 W, 276±23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance.  相似文献   

5.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

6.
This study examined the effect of caffeine supplementation (CAFF) in a Wingate test (WT), and the behaviour of blood lactate concentrations (BLa) and neuromuscular fatigue (NMF), measured as reduced countermovement jump (CMJ) performance, in response to the WT. In a double-blind crossover study, 16 participants attended the laboratory twice, separated by a 72-hour window. In the sessions, participants first ingested 6 mg·kg-1 of either CAFF or placebo (PLAC), and then performed a WT. BLa was measured before (L-pre), and 0.5 min (L-post-0.5) and 3.5 min (L-post-3.5) after conducting the WT. The CMJ test was conducted before (CMJ pre), after (CMJ post), and 3 min after completing (CMJ post-3) the WT. The results indicated that CAFF enhanced peak power (Wpeak: + 3.22%; p = 0.040), time taken to reach Wpeak (T_Wpeak: -18.76%; p = 0.001) and mean power (Wmean: + 2.7%; p = 0.020). A higher BLa was recorded for CAFF at L-post-0.5 (+ 13.29%; p = 0.009) and L-post-3.5 (+ 10.51%; p = 0.044) compared to PLAC. CAFF improved peak power (PP; + 3.44%; p = 0.003) and mean power (MP; + 4.78%; p = 0.006) at CMJ pre, compared to PLAC, whereas PP and MP were significantly diminished at CMJ post and CMJ post-3 compared to pre (p < 0.001 for all comparisons) under both the CAFF and PLAC conditions. PP and MP were increased at post-3 compared to post (p < 0.001 for all comparisons) for both conditions. In conclusion, CAFF increased WT performance and BLa without affecting NMF measured by CMJ. Thus, CAFF may allow athletes to train with higher workloads and enhance the supercompensation effects after an adequate recovery period.  相似文献   

7.
This study was designed to compare the effectiveness of small-sided handball games in combination with handball training (SSG group) versus high-intensity interval training in combination with handball training (HIIT group) on physical performance of young female handball players during pre-competitive period. Twenty-four young female handball players, who have a 6.17 ± 1.54 years training experience and competition in the national league participated in this study. SSG group (n = 12; age 16.06 ± 0.80 years, body mass 61.27 ± 3.68 kg, body height 1.64 ± 4.7 m, body mass index 22.7 kg/m2) while HIIT group (n = 12; 16.20 ± 1.28 years, body mass 62.46 ± 7.86 kg, body height 1.68 ± 6.8 m, body mass index 22 kg/m2). Both groups applied training programs twice-a-week for 8 weeks. Before and after the training programs physical performances were assessed: Countermovement jump (CMJ), Squat jump (SJ), Sprint on 0–10 m; Sprint on 0–20 m; Sprint on 0–30 m, Throwing medicine ball and total distance covered during the Yo-YoIRT1. After 8 weeks SSG and HIIT groups significantly improved CMJ, SJ, 0–20 m sprint, 0–30 m sprint, throwing medicine ball and Yo-YoIRT1 (p ≤ 0.05). However, significantly greater improvement was achieved in Yo-YoIRT1 (m) in HIIT group (28.40%) than SSG group (17.63%). These results indicate that SSG group and HIIT group equally improve of physical performances (jump, sprint and upper explosive strength) among young female handball players in pre-competitive period.  相似文献   

8.

Background

To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake.

Methodology/Principal Findings

Nineteen semiprofessional soccer players ingested 630±52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7×30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7±4.7 v 35.8±5.5 cm; P<0.05), mean running speed during the sprint test (25.6±2.1 v 26.3±1.8 km · h−1; P<0.05) and total distance covered at a speed higher than 13 km · h−1 during the game (1205±289 v 1436±326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30±10 v 24±8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1±1.0 v 0.1±0.1 µg · mL−1; P<0.05).

Conclusions/significance

A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball.  相似文献   

9.
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance.  相似文献   

10.
There is little information about the effects of caffeine intake on female team-sport performance. The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to improve physical performance in female soccer players during a simulated game. A double-blind, placebo controlled and randomized experimental design was used in this investigation. In two different sessions, 18 women soccer players ingested 3 mg of caffeine/kg in the form of an energy drink or an identical drink with no caffeine content (placebo). After 60 min, they performed a countermovement jump (CMJ) and a 7 × 30 m sprint test followed by a simulated soccer match (2 × 40 min). Individual running distance and speed were measured using GPS devices. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the CMJ height (26.6 ± 4.0 vs 27.4 ± 3.8 cm; P < 0.05) and the average peak running speed during the sprint test (24.2 ± 1.6 vs 24.5 ± 1.7 km/h; P < 0.05). During the simulated match, the energy drink increased the total running distance (6,631 ± 1,618 vs 7,087 ± 1,501 m; P < 0.05), the number of sprints bouts (16 ± 9 vs 21 ± 13; P < 0.05) and the running distance covered at >18 km/h (161 ± 99 vs 216 ± 103 m; P < 0.05). The ingestion of the energy drink did not affect the prevalence of negative side effects after the game. An energy drink with a dose equivalent to 3 mg of caffeine/kg might be an effective ergogenic aid to improve physical performance in female soccer players.  相似文献   

11.
Antioxidant supplementation has become a common practice among athletes to boost sport achievement. Likewise, melatonin (MEL) has been ingested as an ergogenic aid to improve physical performance. To date, no study has checked whether the multiple beneficial effects of MEL have an outcome during a maximum running exercise until exhaustion. Therefore, the present study aimed to evaluate the effect of MEL ingestion on physical performance and biochemical responses (i.e., oxidative stress) during exhaustive exercise. In a double blind randomized study, thirteen professional soccer players [age: 17.5 ± 0.8 years, body mass: 70.3 ± 3.9 kg, body height: 1.80 ± 0.08 m; maximal aerobic speed (MAS): 16.85 ± 0.63 km/h; mean ± standard deviation], members of a first league squad, performed a running exercise until exhaustion at 100% of MAS, after either MEL or placebo ingestion. Physical performance was assessed, and blood samples were obtained at rest and following the exercise. Compared to placebo, MEL intake prevented the increase in oxidative stress markers (i.e., malondialdehyde), alleviated the alteration of antioxidant status (i.e., glutathione peroxidase, uric acid and total bilirubin) and decreased post-exercise biomarkers of muscle damage (i.e., creatine kinase and lactate dehydrogenase) (p < 0.05). However, physical performance was not affected by MEL ingestion (p > 0.05). In conclusion, acute MEL intake before a maximal running exercise protected athletes from oxidative stress and cellular damage but without an effect on physical performance.  相似文献   

12.
This study aimed at investigating the effects of a commercially available energy drink on shooting precision, jump performance and endurance capacity in young basketball players. Sixteen young basketball players (first division of a junior national league; 14.9 ± 0.8 years; 73.4 ± 12.4 kg; 182.3 ± 6.5 cm) volunteered to participate in the research. They ingested either (a) an energy drink that contained 3 mg of caffeine per kg of body weight or (b) a placebo energy drink with the same appearance and taste. After 60 min for caffeine absorption, they performed free throw shooting and three-point shooting tests. After that, participants performed a maximal countermovement jump (CMJ), a repeated maximal jumps test for 15 s (RJ-15), and the Yo–Yo intermittent recovery test level 1 (Yo–Yo IR1). Urine samples were obtained before and 30 min after testing. In comparison to the placebo, the ingestion of the caffeinated energy drink did not affect precision during the free throws (Caffeine = 70.7 ± 11.8 % vs placebo = 70.3 ± 11.0 %; P = 0.45), the three-point shooting test (39.9 ± 11.8 vs 38.1 ± 12.8 %; P = 0.33) or the distance covered in the Yo–Yo IR1 (2,000 ± 706 vs 1,925 ± 702 m; P = 0.19). However, the energy drink significantly increased jump height during the CMJ (38.3 ± 4.4 vs 37.5 ± 4.4 cm; P < 0.05) mean jump height during the RJ-15 (30.2 ± 3.6 vs 28.8 ± 3.4 cm; P < 0.05) and the excretion of urinary caffeine (1.2 ± 0.7 vs 0.1 ± 0.1 μg/mL; P < 0.05). The intake of a caffeine-containing energy drink (3 mg/kg body weight) increased jump performance although it did not affect basketball shooting precision.  相似文献   

13.
This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.  相似文献   

14.
We aimed to evaluate the effect of 4 weeks of plyometric training (PT), performed in the pre-competitive period, on the vertical jump performance of professional volleyball athletes. We recruited 17 professional female volleyball players (age: 19 ± 3 years; weight: 67.2 ± 5.50 kg; height: 1.81 ± 0.22 m; body fat: 14.4 ± 2.12%; squat 1RM test: 75.5 ± 7.82 kg; training time experience: 6.2 ± 3.4 years) to participate in four weeks of training and assessments. They were divided into an experimental group (EG = 9) and a control group (CG = 8). Both groups were submitted to friendly matches, technical, tactical and resistance training (4 weeks/˜9 sessions per week), and internal load monitoring was carried out. The EG performed PT twice a week. At the beginning and end of the four weeks, jump tests were performed. The main findings are: 1) PT when incorporated into the pre-competitive period can induce greater improvements in jumping performance (EG = 28.93 ± 3.24 cm to 31.67 ± 3.39 cm; CG = 27.91 ± 4.64 cm to 28.97 ± 4.58 cm; when comparing the percentage delta, we found a difference between groups with ES of 1.04 and P = 0.02); 2) this result is observed when the training load is similar between groups and increases over the weeks, respecting the linear progression principle. Therefore, including plyometric training in the preparatory period for volleyball, with low monotony and training strain increment, is an effective strategy for further CMJ performance improvement.  相似文献   

15.
Objective:The purpose of this study was to evaluate the effects of static stretching and the application of massage on flexibility and jump performance.Methods:Thirty-five athletes studying Physical Education at University (mean age 23.6±1.3 years, mean height 177.8±6.3 cm and mean weight 72.2±6.7 kg) performed one of three different warm-up protocols on non-consecutive days. Protocols included static stretching [SS], combined static stretching and massage [SSM], and neither stretching nor massage [CONT]. The athletes performed flexibility, countermovement jump (CMJ) and squat jump (SJ) tests.Results:SS and SSM protocols demonstrated 12% (p<0.05) and 16% (p<0.05) respectively greater flexibility than the CONT protocol. SJ and CMJ performances were significantly decreased 10.4% (p<0.05) and 5.5% (p<0.05) respectively after the SS protocol. There was no significant difference between SSM and CONT protocol in terms of SJ and CMJ performance.Conclusion:This research indicates that whereas static stretching increases the flexibility it decreases the jumping performance of the athletes. On the other hand, the application of massage immediately following static stretching increases flexibility but does not reduce jumping performance. Considering the known negative acute effects of static stretching on performance, the application of massage is thought to be beneficial in alleviating such effects.  相似文献   

16.
17.

Aim

Our study aimed to investigate changes of different markers for routine assessment of fatigue and recovery in response to high-intensity interval training (HIIT).

Methods

22 well-trained male and female team sport athletes (age, 23.0 ± 2.7 years; V̇O2max, 57.6 ± 8.6 mL·min·kg−1) participated in a six-day running-based HIIT-microcycle with a total of eleven HIIT sessions. Repeated sprint ability (RSA; criterion measure of fatigue and recovery), countermovement jump (CMJ) height, jump efficiency in a multiple rebound jump test (MRJ), 20-m sprint performance, muscle contractile properties, serum concentrations of creatinkinase (CK), c-reactive protein (CRP) and urea as well as perceived muscle soreness (DOMS) were measured pre and post the training program as well as after 72 h of recovery.

Results

Following the microcycle significant changes (p < 0.05) in RSA as well as in CMJ and MRJ performance could be observed, showing a decline (%Δ ± 90% confidence limits, ES = effect size; RSA: -3.8 ± 1.0, ES = -1.51; CMJ: 8.4 ± 2.9, ES = -1.35; MRJ: 17.4 ± 4.5, ES = -1.60) and a return to baseline level (RSA: 2.8 ± 2.6, ES = 0.53; CMJ: 4.1 ± 2.9, ES = 0.68; MRJ: 6.5 ± 4.5, ES = 0.63) after 72 h of recovery. Athletes also demonstrated significant changes (p < 0.05) in muscle contractile properties, CK, and DOMS following the training program and after the recovery period. In contrast, CRP and urea remained unchanged throughout the study. Further analysis revealed that the accuracy of markers for assessment of fatigue and recovery in comparison to RSA derived from a contingency table was insufficient. Multiple regression analysis also showed no correlations between changes in RSA and any of the markers.

Conclusions

Mean changes in measures of neuromuscular function, CK and DOMS are related to HIIT induced fatigue and subsequent recovery. However, low accuracy of a single or combined use of these markers requires the verification of their applicability on an individual basis.  相似文献   

18.
The aim of the present study was to compare the effects of different warm-up interventions on jump, sprint and agility performance in collegiate soccer players. Twenty-one healthy male college soccer players (age: 20.14 ± 1.65 years; body height: 179.9 ± 8.34 cm; body mass: 74.4 ± 13.0 kg; % body fat: 9.45 ± 4.8) participated in the study. Subjects underwent four different randomized warm-up protocols separated by at least 48 hours. The warm-up schemes were: 1. no conditioning contraction protocol (NCC); 2. dynamic stretching (DS); 3. prolonged intermittent low-intensity isometric exercise (ST); and, 4. ST with an additional external load equal to 30% of body weight (ST + 30% BW). All interventions were preceded by a general warm-up. Results from one-way repeated measures ANOVA demonstrated a significant difference in countermovement jump (CMJ) at F(3,60) = 10.2, ηρ2 = 0.337, p < 0.01. Post hoc analysis revealed a significant difference in CMJ performance in DS when compared to NCC and ST + 30% BW. No significant difference in CMJ was observed between DS and ST. CMJ scores in NCC, ST, and ST + 30% BW were non-significant. There was a significant difference in speed; F(3, 60) = 6.61, ηρ2 = 0.248, p < 0.01. Post hoc analysis revealed significantly better time in DS than NCC and ST. However, no difference in speed was observed between DS and ST + 30% BW. Similarly, speed was similar in NCC, ST and ST + 30% BW. A significant difference in agility performance was also observed; F(3, 60) = 24.1, ηρ2= 0.546, p < 0.01. Post hoc analysis revealed significantly greater performance gains in DS than NCC. No significant difference in agility was observed in DS, ST and ST + 30% BW. In conclusion, a prolonged intermittent low-intensity isometric protocol using bodyweight only showed similar benefits with dynamic stretching in countermovement jump performance. When the same isometric condition with additional load equal to 30% of bodyweight was applied, effects in speed and agility were similar to dynamic stretching.  相似文献   

19.
The aim of this study was to evaluate the effects of caffeine ingestion and partial sleep deprivation on mood and cognitive and physical performances. In randomised order, 12 healthy male physical education students completed four test sessions at 18:00 h after placebo or 5 mg/kg of caffeine ingestion during a baseline night (RN) (bed time: from 22:00 to 07:00 h), or during a night of partial (four hrs) sleep deprivation (PSD). During each test session, participants performed a reaction time test, a vigilance test, the 10 s Wingate cycling test during (measuring peak power (PP) and anaerobic capacity), and the 5 m multiple shuttle test (measuring peak distance (PD), total distance (TD), and fatigue index (FI)). Compared to RN, simple reaction time, vigilance, PP, PD, TD, and FI were altered by PSD the following day after placebo ingestion with increased reaction time and FI and reduced PP, PD, TD, and vigilance (p < 0.001). Moreover, during PSD condition, PP, PD, and TD were significantly higher after caffeine ingestion in comparison with placebo ingestion (p < 0.05). However, both simple reaction times and vigilance were significantly lower after caffeine ingestion in comparison with placebo during PSD (p < 0.05). Caffeine is an effective strategy to maintain physical and cognitive performances the day after PSD.  相似文献   

20.
The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups, of which sixty-four completed the study: a soccer training group (SOC; n = 20, 34±4 (means±SD) years, 78.1±8.3 kg, 179±4 cm); a running group (RUN; n = 21, 32±4 years, 78.0±5.5 kg, 179±7 cm); or a passive control group (CON; n = 23, 30±3 years, 76.6±12.0 kg, 178±8 cm). The training intervention lasted 12 weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body composition. Over the 12 weeks, VO2max relative to body weight increased more (p<0.05) in SOC (24.2%, ES = 1.20) and RUN (21.5%, ES = 1.17) than in CON (-5.0%, ES = -0.24), partly due to large changes in body mass (-5.9, -5.7 and +2.6 kg, p<0.05 for SOC, RUN and CON, respectively). Over the 12 weeks, SJ and CMJ performance increased more (p<0.05) in SOC (14.8 and 12.1%, ES = 1.08 and 0.81) than in RUN (3.3 and 3.0%, ES = 0.23 and 0.19) and CON (0.3 and 0.2%), while flexibility also increased more (p<0.05) in SOC (94%, ES = 0.97) than in RUN and CON (0–2%). In conclusion, untrained men displayed marked improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号