首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compound 1 is a potent and selective antagonist of the dopamine D3 receptor. With the aim of developing a carbon-11 labeled ligand for the dopamine D3 receptor, 1 was selected as a potential PET probe. [11C]1 was obtained by palladium catalyzed cross coupling using [11C]cyanide and 4 with a specific activity of 55.5 ± 25.9 GBq/μmol (1.5 ± 0.7 Ci/μmol). [11C]1 was tested in porcine and non-human primate models to assess its potential as a radioligand for PET imaging of the dopamine D3 receptor. We conclude that in both species and despite appropriate in vitro properties, [11C]1 does not show any specific signal for the dopamine D3 receptor.  相似文献   

2.
Reactions of the structural model hydrolases [M2(OAc)4(H2O)(Im)4]; M=Mn (E); M=Co (D); M=Ni (B) and [M2(OPiv)4(H2O)(tmen)2]; M=Mn (E″); M=Co (D″); M=Ni (B″) with a number of hydroxamic acids, RHA (aceto- (R=CH3), benzo- (R = C6H5) and N-phenylacetohydroxamic acid (NPhAHA)) gave a series of hydroxamate dibridged complexes [M2(OAc)(RA)2(Im)4][OTf] and [M2(OPiv)(RA)2(tmen)2][OTf]; M=Co, Ni, in which the bridging hydroxamates exhibit a novel bonding mode in which the deprotonated hydroxamate hydroxyl bridges the two metal centres only. The formation of this type of structure by NPhAHA is the first example involving a secondary hydroxamic acid. These complexes are good structural models of the acetohydroxamate-inhibited C319A variant of Klebsiella aerogenes urease (KAU) and their structures are close to those previously reported for complexes containing tmen capping ligands. Reaction with glutarodihydroxamic acid leads to hydroxylamine elimination and formation of a dimer containing deprotonated N-hydroxyglutarimide as bridging ligand but in this case the structure contains pentacoordinated Co(II) and only one bridging acetate in contrast to the tmen-based series where the analogous complex contains hexacoordinated Co(II) and two bridging acetates. Reaction of [Mn2(OAc)2(μ-OAc)2(μ-H2O)(tmen)2] with acetohydroxamic acid (AHA) gave the first structurally characterized manganese hydroxamate, [Mn2(OAc)3(AA)(tmen)2] with the same bridging/chelating mode of hydroxamate bonding as in the analogous cobalt and nickel complexes, although only one bridging hydroxamate occurs in the manganese complex in contrast to the two bridging hydroxamates in the cobalt and nickel complexes. The isolation of the dimanganese hydroxamate bridged complex suggests that hydroxamic acids may also inhibit the dimanganese based metallohydrolase, arginase.  相似文献   

3.
The crystal structures of two modifications of gadoliniumdicyclopentadienidebromide, [Gd(C5H5)2Br]2 (I) and 1[Gd(C5H5)2Br] (II) have been determined from X-ray diffraction data. I crystallizes in the [Sc(C5H5)2Cl]2-type structure, space group P21/c, with a=14.110(3), b=16.488(3), c= 13.765(3) Å, β=93.25(2)°, V=3197(2) Å3, and Dc= 2.289 g cm−3 for Z=6 molecules. II crystallizes in space group P21/c with a=5.946(7), b=8.447(5), c=20.239(9) Å, β=90.11(4)°, V=1020(2) Å3, Dc=2.392 g cm−3 for Z=4 formula units. The structures have been refined by full matrix least-squares techniques to conventional R factors of 0.034 for 3014 (I) and 1964 (II) reflections (with I>2σ(I)). I consists of dimers with two bromine bridges (mean GdBr 2.872 Å). II has a double chain structure with alternating juxtaposition of gadolinium and bromine atoms (GdBr 2.912 Å (once) and 3.133 Å (twice)). The arrangement of the C5H5 groups with regard to the metal η5 fashion) is nearly identical in I and II (mean GdC 2.63(1) Å (I) and 2.62(1) Å (II)). Single crystals of I and II are obtained by sublimation at different temperatures. The formation of both modifications is discussed as to its dependence on the state of the gaseous phase equilibrium [Gd(C5H5)2Br]2 ⇄ 2Gd(C5H5)2Br. Obviously, I crystallizes from gaseous phase dimers while II forms from the monomers.  相似文献   

4.
《Inorganica chimica acta》1988,147(2):189-197
Complexes of the M(en)3Ag2(CN)4 (M = Ni, Zn, Cd) and M(en)2Ag2(CN)4 (M = Ni, Cu, Zn, Cd) type were prepared and identified by elemental analysis, infrared spectroscopy, measurement of magnetic susceptibility, and X-ray powder diffractometry. The crystal structures of Ni(en)3Ag2(CN)4 (I) and Zn(en)2Ag2(CN)4 (II) were determined by the method of monocrystal structure analysis. Complex I crystallizes in the space group C2/c, a = 1.2639(5), b = 1.3739(4), c = 1.2494(4) nm, β = 113.25(4)°, Dm = 1.86(1), Dc = 1.86 gcm−3 Z = 4, R = 0.0429. The crystal structure of I consists of complex cations [Ni(en)3]2+ and complex anions [Ag(CN)2]. Complex II crystallizes in the space group I2/m, a = 0.9150(3), b = 1.3308(4), c = 0.6442(2) nm, β = 95.80(3)°, Dm = 2.14(1), Dc = 2.15 gcm−3, Z = 2, R = 0.0334. Its crystal structure consists of infinite, positively charged chains of the [-NCAgCNZn- (en)2]nn+ type and isolated [Ag(CN)2] anions. The atoms of Ag are positioned parallely to the z axis and the AgAg distance is equal to 0.3221(2) nm.  相似文献   

5.
Long chain fatty acid synthesis was studied using etiolated leek seedling microsomes. In the presence of ATP, [2-14C]malonyl-CoA was incorporated into fatty acids of C16C26. The omission of ATP, even in the presence of acetyl-CoA, led to a complete loss of activity, which was restored by addition of exogeneous acyl-CoAs. Comparison of acyl-CoA (C12C24) elongation showed that stearoyl-CoA, in the presence of [2-14C]malonyl-CoA, was the more efficient precursor leading to the formation of fatty acids having a chain length of C20C26. [1-14C]C16CoA and [1-14C]C18CoA were elongated in the presence of malonyl-CoA, without degradation of the acyl chain. The time-course and the malonyl-CoA concentration curves showed that [1-14C]C18CoA was a better primer than [1-14C]C16CoA. Acyl-CoA elongation was also studied over the concentration range 4.5–45 μM [1-14C]C18CoA. Comparison of the radioactivity incorporated into the fatty acids formed using [2-14C]malonyl-CoA in the presence of C18CoA, on the one hand, and [1-14C]C18CoA in the presence of malonyl-CoA, on the other, demonstrated clearly that the acyl chain of the acyl-CoA was elongated by malonyl-CoA.  相似文献   

6.
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te] and [C4H3S-2-Te] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3] unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3] units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å.  相似文献   

7.
The P,N-[3]ferrocenophane ligand 3 forms a (κP-ligand)AuCl complex (5) upon treatment with (Me2S)AuCl. The corresponding P,P-[3]ferrocenophane system 4 yields a binuclear (κPP-chelate ligand)(AuCl)2 complex (6) when reacted with 2 equivalents of the (Me2S)AuCl reagent. Complex 6 features an intramolecular aurophilic Au?Au interaction. Treatment of the P,P-[3]ferrocenophane 4 with 1.0 equiv. of (PPh3)AuCl gives the tetra-coordinated mono-gold(I) complex (P,P-ligand)(PPh3)AuCl (7), whereas the cationic [(P,P-ligand)2Au]+[Cl] system is obtained from 4 and 0.5 equivalents of (Me2S)AuCl. The [(P,P-ligand)2Au]+ system is obtained in different diastereoisomeric forms (8 and 9) depending on the stereochemistry of the pair of P,P-[3]ferrocenophane chelate ligand used. Examples of the complexes 5, 6, 7 and 8 were characterized by X-ray diffraction.  相似文献   

8.
A series of organotin(IV) carboxylates, [Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [Bu3SnL]n(4), [Me6Sn2L2]n(5), [Ph3SnL]n(6) and [Oct2SnL2] (7), where L = O2CCH2C6H4OCH3-4, have been synthesized. These complexes have been characterized by elemental analysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn). Based on spectroscopic results, the ligand appeared to coordinate to the Sn atom through COO moiety. Single crystal analysis has shown a bridging behavior of ligand in tributyl- and trimethyltin(IV) derivatives, and a chelating bidentate mode in diethyltin(IV) complex. Bioassay results have shown that these compounds have good antibacterial, antifungal and antitumor activity. The activity against prostate cancer cell lines (PC-3) decreased in the order 1 > 5 > 2 > 3 > 7.  相似文献   

9.
《Inorganica chimica acta》2001,312(1-2):163-169
The first tellurated derivative of morpholine, N-{2-(4-methoxyphenyltelluro)ethyl}morpholine (L1) has been synthesized by reacting in situ generated ArTe with 4-(2-chloroethyl)morpholine hydrochloride under N2 atmosphere. The compound L1 gives molecular ion peak at m/z 351 and is characterized structurally. The donor atoms N and Te in compound L1 are rightly oriented for its ligation in bidentate mode. The TeC(alkyl) is 0.02 Å longer than TeC(aryl). The complexes of ligand L1 having composition [PtCl2(L1)2] (1) and [RuCl2(p-cymene)L1] (2) have been synthesized. The compound 1 has been characterized structurally. The Pt has a square planar geometry in complex 1 and two molecules of ligand L1 bonded through Te alone are trans to each other (PtTe=2.583(2) Å). The 13C{1H} NMR spectrum of complex 1 is as expected. The 1H NMR spectrum of single crystals of complex 1 shows multiplication of signals, which is supported by HETCOR experiments. The complex 2 also has ligand L1 in a monodentate coordination mode, bonded through Te alone. This is supported by deshielded CH2Te and ArCTe signals in 1H and 13C{1H} NMR spectra of complex 2 with respect to those of free ligand L1. The HETCOR spectrum of complex 2 has been used to authenticate the assignments of CH2Te group, as its two protons appear to be magnetically non-equivalent.  相似文献   

10.
《Inorganica chimica acta》2001,312(1-2):40-52
The substitution of chloro ligand in [M(triphos)Cl]Cl complexes [M=Pd (1), Pt (2); triphos=Ph2PC2H4P(Ph)C2H4PPh2] by reaction with 1 equiv. of KX resulted in the formation of the ionic complexes [M(triphos)X]Cl [X=I, M=Pd (3), Pt (4); X=CN, M=Pd (5), Pt (6)]. Methanolic solutions of silver nitrate in excess displace the chloro ligand and counterion of 1 and 2, giving rise to the formation of the crystalline complexes [M(triphos)(ONO2)](NO3) [M=Pd (7), Pt (8)] suitable for X-ray diffraction studies. The complexes show a distorted square-planar environment around the metal, there being three coordination sites occupied by phosphorus atoms from the triphos and the fourth by the oxygen atom from a nitrate acting as monodentate ligand. A second NO3  is acting as counterion with D3h symmetry. The use of a high excess of SnCl2 in the presence of 1 equiv. of PPh3 enabled the formation of complexes [M(triphos)(PPh3)](SnCl3)2 [M=Pd (9), Pt (10)]. These complexes, in addition to [M(triphos)X]X [X=Br, M=Pd (1a), Pt (2a); X=I, M=Pd (1b), Pt (2b)], were synthesised and all Pt(II) complexes characterised by microanalysis. Mass spectrometry, IR spectroscopy, NMR spectroscopy and conductivity measurements were also used for characterisation. The structure and reactivity studies in solution were carried out by 31P{1H} NMR. The trends in chemical shifts δ (P) and 1J(195Pt, 31P) coupling constants were used to establish a sequence in the X ligand exchange reactions. While [Pd(triphos)I]I (1b) undergoes a ring-opening reaction by titration with AuI, the analogous Pt(II) complex (2b) does not react. The formation of new five-coordinate Pd(II) and Pt(II) complexes was observed by titration of 58 with potassium cyanide.  相似文献   

11.
The bidentate ligand benzylacetylacetone was used to synthesize the Cu(II) complexes 1 and 2 without and with 4,4-bipyridine ligand, respectively. The complexes were characterized by analytical and spectroscopic studies. The mononuclear complex [Cu(C10H9O2)2] (1) has been synthesized by the reaction of copper acetate with the ligand whereas the tetranuclear complex [Cu4(4,4-bpy)4(C10H9O2)4(C2H3O2)4] (2) has been synthesized by the reaction of copper acetate with the ligand followed by the addition of 4,4-bipyridine. The X-ray analysis shows that the complex 1 has square planar geometry and the complex 2 has square pyramidal geometry around the metal centers. The thermogravimetric studies showed that the complexes undergo decomposition in multiple steps.  相似文献   

12.
Condensed and dispersed chromatin fractions were isolated from human placental nuclei. The DNA of each fraction was purified and characterised by isopycnic centrifugation, thermal fractionation on hydroxylapatite (HAP) and sequence complexity studies. The DNAs had identical buoyant densities in neutral CsCl (1.698 g/cm3) and similar melting profiles on HAP. Analytical ultracentrifugation in Ag+-Cs2SO4, however, showed that satellite DNAs were present in the condensed fraction DNA (DNAC) but were not visible in the dispersed fraction DNA (DNAD). In addition, DNAC was found to be enriched in highly reiterated sequences (20% reassociated by C0t 10?3) which can be correlated with the presence of satellite DNAs, whereas DNAD contained only 3% of these fast reassociating sequences. In contrast DNAD contained 30% intermediate sequences (reassociating between C0t 10?3 and C0t 100) which represent only 10% of DNAC. The reassociated highly repeated sequences of DNAC showed the presence of two components in both CsCl density gradients and HAP thermal elution studies. This suggests that either there are sequence relationships resulting in partial mismatching between the different highly repeated DNA sequences in this fraction, or that highly repeated sequences are associated with less repetitious DNA. The results are discussed in terms of possible differences in genetic activity between the chromatin fractions.  相似文献   

13.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

14.
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[11C]methylphenyl)thiazol-2-yl]-1-carboxamide ([11C]DFMC, [11C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1 nM) for FAAH. [11C]1 was synthesized by C11C coupling reaction of arylboronic ester 2 with [11C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [11C]1 was obtained with a radiochemical yield of 20 ± 10% (based on [11C]CO2, decay-corrected, n = 5) and specific activity of 48–166 GBq/μmol. After the injection of [11C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [11C]1 revealed high uptakes in the cerebellar nucleus (SUV = 2.4) and frontal cortex (SUV = 2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30 min after the radioligand injection. The present results indicate that [11C]1 is a promising PET ligand for imaging of FAAH in living brain.  相似文献   

15.
Two new TTF-based donors that are dithiolene ligand precursors, 3-{5-[(2-cyanoethyl)thio]-2-(5,6-dihydrothieno[2,3-d][1,3]dithiol-2-ylidene-1,3-dithiol-4-yl)thio}propanenitrile, dtdt (1) and 3-({5-[(2-cyanoethyl)thio]-2-thieno[2,3-d][1,3]dithiol-2-ylidene-1,3-dithiol-4-yl)thio}propanenitrile, α-tdt (2), were synthesized and characterized. The electrochemical properties of these compounds were studied by cyclic voltammetry (CV) in acetonitrile. Compound 1 shows two reversible oxidation process at 1E1/2 = 0.639 V and 2E1/2 = 0.997 V versus Ag/AgCl. This same processes occurs at 1E1/2 = 0.612 V and 2E1/2 = 0.906 V in the case of 2. The crystal structures confirm the ability of these molecules to establish interactions with their neighbours through the peripheral sulfur atoms.  相似文献   

16.
《Inorganica chimica acta》1987,134(1):155-157
The crystal structure of erbiumdicyclopentadienidechloride [Er(C5H5)2Cl]2 has been determined from X-ray diffraction data. The compound crystallizes in space group P21/c with a=11.056(3), b= 8.015(1), c=12.154(3) Å, β=110.28(2)°, V= 1010.2(7) Å3, Dc=2.189 g cm−3 and Z=2 dimers. The structure has been refined by full-matrix least- squares techniques to a conventional R factor of 0.027 for 2042 reflections (with I > 2σ(I)). In the unit cell centrosymmetric dimers of orte type exist with bridging chlorine atoms and C5H5 groups bonded in η5-fashion to the metal (mean ErC 2.59 Å). The [Er(C5H5)2Cl]2-type is compared to the [Sc(C5H5)2Cl]2-type structure which is realized in several dicyclopentadienidebromides of the lanthanides.  相似文献   

17.
《Inorganica chimica acta》2006,359(9):2842-2849
The reaction between TpOs(N)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] and aqueous (nBu4N)(OH) in THF-d8 forms the nitrosyl complex TpOs(NO)Cl2 (5) among other products, suggesting an initial hydroxide attack at the nitrido ligand. In contrast, the reaction of the acetate complex TpOs(N)(OAc)2 (2) with NaOH in Me2CO/H2O yields the osmium bis-hydroxide complex TpOs(N)(OH)2 (3), which has been structurally characterized by single-crystal X-ray diffraction. Acetate for hydroxide exchange could occur by ligand substitution or by nucleophilic attack at the carbonyl carbon of the acetate ligands (saponification). Reacting 2 with Na18OH in H218O/CD3CN yields predominantly doubly 18O-labeled TpOs(N)(18OH)2 (3-18O2) and unlabeled acetate, by ESI/MS and 13C{1H} NMR. This indicates that hydroxide reacts by substitution rather than by attack at the ligand. The reaction of 2 with the softer nucleophile thiosulfate occurs at the nitrido ligand, giving the thionitrosyl complex TpOs(NS)(OAc)2 (4). Reacting 4 with NaOH in (CD3)2CO/D2O also generates the bis-hydroxide complex 3.  相似文献   

18.
Inclusion compound of a macrocyclic cavitand cucurbit[8]uril (C48H48N32O16, CB[8]) with a square-planar palladium(II) complex of a polyamine ligand cyclam, {[Pd(cyclam)]@CB[8]}Cl2·16?H2O (1), was synthesized and characterized by X-ray crystallography, elemental analysis, IR, and electrospray ionization (ESI) mass spectrometry. The complex [Pd(cyclam)]2+ undergoes chemical oxidation within the CB[8] cavity leading to the formation of the palladium(IV) inclusion compound {trans-[Pd(cyclam)Cl2]@CB[8]}Cl2·14H2O (2). The Pd(II) and Pd(IV) complexes are completely encapsulated within the CB[8] cavity. The cyclam ring in 1 and 2 adopts the most stable configuration (trans-III (S,S,R,R)).  相似文献   

19.
《Life sciences》1995,57(23):PL367-PL372
[3H]A-69024 has been prepared as a radioligand for studying the dopamine D1 receptor. [3H]A-69024 binds to rat striatal membranes with a KD = 14.3 ± 3.2 nM (mean ± SEM; n = 3) and Bmax = 63.5 ± 12.8 fmol/mg wet tissue (1.8 ± 0.3 pmol/mg protein). This ligand binds to only one site with a Hill coefficient close to unity. The in vivo biodistribution of [3H]A-69024 showed a high uptake in the striatum (5.9 %ID/g) at 5 min followed by clearance. As a measure of specificity, the striatum/cerebellar ratio reached a maximum of 6.7 at 30 min post-injection. Pre-treatment with the D1 antagonist R(+)SCH 23390 (1 mg/kg) reduced this ratio to unity. The dopamine antagonist (+)butaclamol and unlabeled A-69024 inhibited striatal uptake by 70 and 51%, respectively. Spiperone (D2/5-HT2A) and ketanserin (5-HT2A/5-HT2C) at doses of 1 mg/kg had no inhibitory effect on [3H]A-69024 uptake in the striatum; however, increased uptake of [3H]A-69024 by > 30% in the whole brain was observed. The selectivity and affinity of [3H]A-69024 suggests that this non-benzazepine radioligand may be useful for in vitro and in vivo studies of the dopamine D1 receptor.  相似文献   

20.
The electrochemical behavior of the S,S-bridged adducts of square planar metalladithiolene complexes was investigated by using cyclic voltammetry and electrochemical spectroscopies (visible, near-IR, and ESR). The norbornene-bridged S,S-adduct [Ni(S2C2Ph2)2(C7H8)] (2a; C7H8=norbornene) formed by [Ni(S2C2Ph2)2] (1a) and quadricyclane (Q) was dissociated by an electrochemical reduction, and anion 1a and norbornadiene (NBD) were formed. Q was isomerized to NBD in the overall reaction. The o-xylyl-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)2(C6H4)] (3a; (CH2)2(C6H4)=o-xylyl) was also dissociated by an electrochemical reduction, and this reaction gave the o-xylyl radical (o-quinodimethane). The reduction of complex 3a in the presence of excess o-xylylene dibromide underwent the catalytic formation of o-quinodimethane. The butylene-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)4] (4a; (CH2)4=butylene) was stable on an electrochemical reduction. The lifetimes of reduced species of these adducts 2a-4a were influenced by the stability of the eliminated group (stability: NBD > o-xylyl radical (o-quinodimethane) > butylene radical). Therefore, the reduced species are stable in the sequence 4a > 3a > 2a. Although the palladium complex [Pd(S2C2Ph2)2] (1b) was easier to reduce than the nickel complex 1a or the platinum complex [Pt(S2C2Ph2)2] (1c), their S,S-adducts were easier to reduce in the order of Ni adduct > Pd adduct > Pt adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号