首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

2.
The interaction of native calf thymus DNA with the Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine (ZnL(2+) and CuL(2+)), in 1 mM Tris-HCl aqueous solutions at neutral pH, has been monitored as a function of the metal complex-DNA molar ratio by UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results support for an intercalative interaction of both ZnL(2+) and CuL(2+) with DNA, showing CuL(2+) an affinity of approximately 10 times higher than ZnL(2+). In particular, the values of the binding constant, determined by UV spectrophotometric titration, equal to 7.3x10(4) and 1.3x10(6)M(-1), for ZnL(2+) and CuL(2+), respectively, indicate the occurrence of a marked interaction with a binding size of about 0.7 in base pairs. The temperature dependence of the absorbance at 258 nm suggests that both complexes strongly increase the DNA melting temperature (Tm) already at metal complex-DNA molar ratios equal to 0.1. As evidenced by the quenching of the fluorescence of ethidium bromide-DNA solutions in the presence of increasing amounts of metal complex, ZnL(2+) and CuL(2+) are able to displace the ethidium cation intercalated into DNA. A tight ZnL(2+)-DNA and CuL(2+)-DNA binding has been also proven by the appearance, in both metal complex-DNA solutions, of a broad induced CD band in the range 350-450 nm. In the case of the CuL(2+)-DNA system, the shape of the CD spectrum, at high CuL(2+) content, is similar to that observed for psi-DNA solutions. Such result allowed us to hypothesize that CuL(2+) induces the formation of supramolecular aggregates of DNA in aqueous solutions.  相似文献   

3.
Luteinizing hormone-releasing hormone (LHRH), a hypothalamic neurohormone, forms a complex with Zn ions in solution. In order to explain the structure of this complex, the stability constants of Zn(II) complexes of LHRH and also pyroglutamyl-histidine-methylester, N-acetyl-histamine, and N-acetyl-histidine were established with the use of potentiometric technique. The nuclear magnetic resonance spectroscopy shows that the mode of coordination of Zn(II) to LHRH consists of binding to the imidazole nitrogen and the peptide oxygen of the His-Trp bond.  相似文献   

4.
5-Fluoroorotic acid (H(3)FOro) is a potent inhibitor for some metalloproteins such as dihydroorotase and dihydroorotate dehydrogenase and for thymidylate synthase (nonmetalloprotein) in the human malaria parasite Plasmodium falciparum. To study the coordination chemistry of H(3)Foro, the ammonium salt [NH(4)(+)][H(2)FOro(-)].1H(2)O (1) and the first coordination compounds of H(3)FOro with transition metals [Ni(HFOro(2-))(H(2)O)(4)].1H(2)O (2), [Cu(HFOro(2-))(NH(3))(H(2)O)](n) (3) and [Cu(3)(FOro(3-))(2)(NH(3))(6)(H(2)O)(2)] (4) have been synthesised and characterised by single-crystal X-ray diffraction, IR spectroscopy and by thermogravimetry. Three different coordination modes of 5-fluoroorotic acid have been established. In all cases the ligand is chelated to the metal via an amido-nitrogen and a carboxylate-oxygen but for (3), there is also a carboxylate oxygen from another HFOro(2-) ligand resulting in a polymeric structure and for (4), the second amido-nitrogen in the ororotic acid ring coordinates to give a trinuclear complex. The metal coordination polyhedra are octahedral in (2), square-pyramidal in (3) and square-planar and approximately square-pyramidal in (4). An octahedral coordination geometry including a N(1)/O(61)-chelating HFOro(2-) ligand with four aqua ligands is proposed for the Zn complex [Zn(HFOro(2-)) (H(2)O)(4)].0.5H(2)O (5), based on IR and thermogravimetric data. Extensive hydrogen bonded networks and some ring-ring stacking interactions are observed in each of the structures.  相似文献   

5.
6.
7.
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 microns). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.  相似文献   

8.
The syntheses of three new compartmental ligands are reported. Each ligand shows two 1,4,7-triazaheptane (dien) moieties separated by different rigid aromatic groups. The dien unit is linked to the spacer through its central N-atom, while each aromatic moiety contains two hydroxyl-phenolic functions. The synthetic aspects involved in attaching two dien subunits to an aromatic group containing two hydroxyl functions were explored. Each ligand synthesized can coordinate two metal ions positioned far from each other; the single dinuclear units will be useful as building blocks in new supramolecular aggregates. The basicity and binding properties of one of the synthesized ligands (3,3′-bis[N,N-bis(2-aminoethyl)aminomethyl]-4,4′-dihydroxybiphenyl (L2)) were potentiometrically studied in aqueous solution. L2 was found to behave as a diprotic acid and as a pentaprotic base under the experimental conditions used. L2 forms stable mononuclear and dinuclear complexes with Cu(II) and Zn(II) ions; the mononuclear species show a tendency to dimerize, while the dinuclear ones are predominant in the presence of two equivalents of M(II) ions in solution.Both protonation and the presence of Zn(II) strongly affect the fluorescence emission properties of L2, which can be used as a new chemosensor for H+ and Zn(II) ions. L2 exhibits pH-dependent fluorescence and the emission due to the different protonation of L2 and can be ascribed, above all, to the degree of protonation of the 4,4′-biphenol unit; thus, L2 is more emitting at acidic pH values where the aromatic unit is fully protonated. On the contrary, the Zn-dinuclear species are more emitting from neutral to alkaline pH values exhibiting a CHEF effect which reaches its maximum values (seven times those of the free ligand) at pH 9 with the [Zn2H−2L2]2+ species, thus highlighting the sensing properties of this new chemosensor towards Zn(II).  相似文献   

9.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

10.
Metal complex–protein interaction is an evolving concept for determining cellular targets of metallodrugs. Lacatate dehydrogenase (LDH) is critically implicated in tumor growth and therefore, considered to be an important target protein for anti-tumor metal complexes. Due to efficient biocompatibility of copper (Cu2+) and zinc (Zn2+), we synthesized CubpyAc2 · H2O (Cu-bpy) and ZnbpyAc2 · H2O (Zn-bpy; where bpy = 2,2′ bipyridine, Ac = CH3COO) complexes and evaluated their interaction with and modulation of LDH in mouse tissues. The increasing concentration of both the complexes showed a significant shift in UV–Vis spectra of LDH. The binding constant data (Kc = 1 × 103 M−1 for Cu-bpy and 7 × 106 M−1 for Zn-bpy) suggested that Zn-bpy-LDH interaction is stronger than that of Cu-bpy-LDH. LDH modulating potential of the complexes were monitored by perfusing the mice tissues with non-toxic doses of Cu-bpy and Zn-bpy followed by activity measurement and analysis of LDH isozymes on non-denaturing polyacrylamide gel electrophoresis (PAGE). As compared to the control sets, Cu-bpy caused a significant decline (P < 0.05–0.001) in the activity of LDH in all the tissues studied. However, Zn-bpy showed inhibition of LDH only in liver (P < 0.01), kidney (P < 0.001) and heart (P < 0.01), but with no effect in spleen, brain and skeletal muscle tissues. PAGE analysis suggested that all the five LDH isozymes are equally sensitive to both the complexes in the respective tissues. The results suggest that Cu- and Zn-bpy are able to interact with and inhibit LDH, a tumor growth supportive target protein at tissue level.  相似文献   

11.
In this paper are presented the features of copper (II) and zinc (II) heteronuclear complexes of the cyclic peptide—c(HKHGPG)2. The coordination properties of ligand were studied by potentiometric, UV–Vis and CD spectroscopic methods. These experiments were carried out in aqueous solutions at 298 K depending on pH. It turned out that in a physiological pH dominates Cu(II)/Zn(II) complex ([CuZnL]4+) which could mimic the active center of superoxide dismutase (Cu,ZnSOD). In next step we performed in vitro research on Cu,ZnSOD activity for [CuZnL]4+ complex existing in 7.4 pH by the method of reduction of nitroblue tetrazolium (NBT). Also mono- and di-nuclear copper (II) complexes of this ligand were examined. The ability of inhibition free radical reaction were compared for all complexes. The results of these studies show that Cu(II) mono-, di-nuclear and Cu(II)/Zn(II) complexes becoming to new promising synthetic superoxide dismutase mimetics, and should be considered for further biological assays.  相似文献   

12.
Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres   总被引:1,自引:0,他引:1  
The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.  相似文献   

13.
14.
Teicoplanin, a member of the “last chance” antibiotic family has a similar structure and the same mechanism of action as parent drug vancomycin, which is proved to be an effective binder of Cu(II) ions. However, the potentiometric and spectroscopic studies (UV-visible, CD, NMR) have shown that the modification of the N-terminal structure of the peptide backbone in teicoplanin affects considerably the binding ability towards Cu(II) ions. While vancomycin forms almost instantly the stable 3 N complex species involving the N-terminal and two amide nitrogen donors, in case of teicoplanin only two nitrogen donors derived from the N-terminal amino group and adjacent peptide bond are coordinated to Cu(II) ion within the whole pH range studied. The major factor influencing the binding mode is most likely the structure of the N-terminus of the peptide unit in the antibiotic ligand.  相似文献   

15.
The energetics of Cu (II) ion binding to mononucleosomes from C3HA mice liver and ascitic hepatoma 22A cells was determined from their binding isotherms by equilibrium dialysis and pulse high frequency inductively coupled plasma atomic emission spectroscopy. Anticooperative binding of copper ions with normal and tumor mononucleosomes were observed under various NaCl concentrations (0.002; 0.02; 0.2 M). The binding constants of Cu(II) ion with normal mononucleosomes in 0.002, 0.02, 0.2 M NaCl are 6.10×104,5.22×104,4.31×104 respectively. The binding constants of Cu(II) ion with tumor mononucleosomes in 0.002, 0.02, 0.2 M NaCl are 6.68×104,6.12×104,4.82×104 respectively.  相似文献   

16.
The interaction of poly-5-bromouridylic acid [poly(BU)] with adenosine and 9-methyladenine was studied by equilibrium dialysis, optical melting, and microcalorimetry. The stacking free energy, ω, was estimated as ?17.6 kJ/mol for adenosine·2poly(BU) and ?18.8 kJ/mol for 9-methyladenine·2poly(BU) from the binding isotherms constructed from equilibrium dialysis results. The binding isotherms constructed from a series of melting curves also gave ω values for adenosine·2poly(BU). The thermal stability of the complex depends on monomer concentration, and the partial molar enthalpies of the complex formation at the midpoint of the transition were evaluated from the Tm coefficients as a function of free monomer concentration. The values of ?92.0 and ?90.4 kJ/mol were obtained for adenosine·2poly(BU) and 9-methyladenine·2poly(BU) in 0.4M NaCl–0.02M Na-cacodylate–5 × 10?4M EDTA (pH 7.0), respectively. Microcalorimetric measurements provided lower integral heats of reaction values for these complexes, i.e., ?73.2 kJ/mol for adenosine·2poly(BU) and ?71.5 kJ/mol for 9-methyladenine·2poly(BU). A comparison with a polyribouridylic acid system provided a quantitative understanding of a stabilization by bromination in terms of thermodynamic parameters.  相似文献   

17.
Two new iminodiacetyl-hydroxamate derivatives, the N-benzyl-N-carboxymethyl-iminoacetohydroxamic acid (H(2)L(1)) and the N-benzyl-N'-hydroxypiperazine-2,6-dione (HL(2)), have been recently reported as very effective inhibitors against a set of zinc-containing matrix metalloproteinases (MMPs). Herein, aimed at understanding that inhibitory function, these compounds are studied in their complex formation equilibria with three biologically relevant first-row transition M(2+) metal ions (M=Cu, Zn, Ni) by using potentiometric and spectroscopic techniques. At physiological conditions, complexation of these metal ions by H(2)L(1) mostly occurs with formation of 1:1 species by tridentate co-ordination (O,N,N) (carboxylate-amino-hydroxamate), whereas complexation with HL(2) mainly involves the formation of 1:2 (M:L) species with normal (O,O) hydroxamate coordination. Moreover, at higher pH, H(2)L(1) is able to form a pentanuclear tetrameric copper complex with an interesting 12-metallacrown-4 structure.  相似文献   

18.
Metal ion (Mg(II), Ca(II), Zn(II), Cu(II), Ni(II)) complexes of nystatin and amphotericin B (polyene antibiotics) have been prepared as solids. The stoichiometry of the complexes has been established. IR, ESR investigation indicates the metal-ligating sites in the polyene molecules. The existence of such complexes is discussed in the light of polyene mode- of-action theories.  相似文献   

19.
Novel chiral Schiff base ligands (R)/(S)‐2‐amino‐3‐(((1‐hydroxypropan‐2‐yl)imino)methyl)‐4H‐chromen‐4‐one (L1 and L2) derived from 2‐amino‐3‐formylchromone and (R/S)‐2‐amino‐1‐propanol and their Cu(II)/Zn(II) complexes ( R1 , S1 , R2 , and S2 ) were synthesized. The complexes were characterized by elemental analysis, infrared (IR), hydrogen (1H) and carbon (13C) nuclear magnetic resonance (NMR), electrospray ionization‐mass spectra (ESI‐MS), and molar conductance measurements. The DNA binding studies of the complexes with calf thymus were carried out by employing different biophysical methods and molecular docking studies that revealed that complexes R1 and S1 prefers the guanine–cytosine‐rich region, whereas R2 and S2 prefers the adenine–thymine residues in the major groove of DNA. The relative trend in Kb values followed the order R1 S1 R2 S2 . This observation together with the findings of circular dichroic and fluorescence studies revealed maximal potential of (R)‐enantiomeric form of complexes to bind DNA. Furthermore, the absorption studies with mononucleotides were also monitored to examine the base‐specific interactions of the complexes that revealed a higher propensity of Cu(II) complexes for guanosine‐5′‐monophosphate disodium salt, whereas Zn(II) complexes preferentially bind to thymidine‐5′‐monophosphate disodium salt. The cleavage activity of R1 and R2 with pBR322 plasmid DNA was examined by gel electrophoresis that revealed that they are good DNA cleavage agents; nevertheless, R1 proved to show better DNA cleavage ability. Topoisomerase II inhibitory activity of complex R1 revealed that the complex inhibits topoisomerase II catalytic activity at a very low concentration (25 μM). Furthermore, in vitro antitumor activity of complexes R1 and S1 were screened against human carcinoma cell lines of different histological origin. Chirality 24:977–986, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The stoichiometry, stability constants and solution structure of the complexes formed in the reaction of copper(II) with N-terminal fragments of human and mouse beta-amyloid peptide, 1-6, 1-9, 1-10 have been determined by potentiometric, UV/VIS, CD and EPR spectroscopic methods. The fragments 1-9 and 1-10 form complexes with the same coordination modes as the fragments 1-6. The coordination of the metal ion for human and mouse fragments starts from the N-terminal Asp residue which stabilizes significantly the 1N complex as a result of chelation through the beta-carboxylate group. In a wide pH range of 4-10, the imidazole nitrogen of His(6) is coordinated to form a macrochelate. Results show that, in the pH range 5-9 the human fragments form the complex with different coordination mode compared to that of the mouse fragments. The low pK(1)(amide) values (approximately 5) obtained for the mouse fragments may suggest the coordination of the amide nitrogen of His(6) while in case of the human fragments the coordination of the amide nitrogen of Ala(2) is suggested. The replacement of glycine by the arginine residue in the fifth position of the beta-amyloid peptide sequence changes the coordination modes of a peptide to metal ion in the physiological pH range. In a wide pH (including physiological) range the mouse fragments of beta-amyloid peptide are much more effective in Cu(II) binding than the human fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号