首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure analysis of the 2:1 adduct of cyclosarcosylsarcosine with silver(I) nitrate shows that the Ag(I) ion directly interacts with the carbonyl oxygen atoms of the peptide moiety. The independent unit is composed of a half cyclosarcosylsarcosine molecule, which sits on a crystallographic center of symmetry, per each silver nitrate unit. The crystal is held together by strong coulombic interactions between the silver and the nitrate ions and by ion- dipole interactions between the silver ion and the organic molecule. The coordination at the Ag(I) ion cannot be described in terms of a regular geometry; each silver ion experiences different types of contacts with the surrounding oxygen atoms. Six Ag-O interactions are in the fange 2.35-2.68 Å; a seventh Ag-O interaction presents a distance of 2.90 Å. This latter contact is perhaps the cause of the severe distortion from the ideal octahedral geometry observed experimentally. The nitrate ion and the cyclic peptide molecule are both nearly planar.  相似文献   

2.
A comprehensive analysis of interfacial water molecules in the structures of 109 unique protein-DNA complexes is presented together with a new view on their role in protein-DNA recognition. Location of interfacial water molecules as reported in the crystal structures and as emerging from a series of molecular dynamics studies on protein-DNA complexes with explicit solvent and counterions, was analyzed based on their acceptor, donor hydrogen bond relationships with the atoms and residues of the macromolecules, electrostatic field calculations and packing density considerations. Water molecules for the purpose of this study have been categorized into four classes: viz. (I) those that contact both the protein and the DNA simultaneously and thus mediate recognition directly; (II) those that contact either the protein or the DNA exclusively via hydrogen bonds solvating each solute separately; (III) those that contact the hydrophobic groups in either the protein or the DNA; and, lastly (IV) those that contact another water molecule. Of the 17,963 crystallographic water molecules under examination, about 6% belong to class I and 76% belong to class II. About three-fourths of class I and class II water molecules are exclusively associated with hydrogen bond acceptor atoms of both protein and DNA. Noting that DNA is polyanionic, it is significant that a majority of the crystallographically observed water molecules as well as those from molecular dynamics simulations should be involved in facilitating binding by screening unfavorable electrostatics. Less than 2% of the reported water molecules occur between hydrogen bond donor atoms of protein and acceptor atoms of DNA. These represent cases where protein atoms cannot reach out to DNA to make favorable hydrogen bond interactions due to packing/structural restrictions and interfacial water molecules provide an extension to side-chains to accomplish hydrogen bonding.  相似文献   

3.
The ability of a metal-coordinated pyrazole to engage in hydrogen bonding has been explored by synthesis of the title complex, bis[3-([thiomethyl]methyl)pyrazole]copper(II) perchlorate (3). The coordination in 3 can be described as pseudo-octahedral, with two relatively tightly-bound 3-[(thiomethyl)methyl]pyrazole ligands occupying the equatorial plane, forming a [CuN(2)S(2)](2+) unit with the S donors mutually trans to each other. The axial positions are each filled by a weakly bound perchlorate counterion, one oxygen of which forms a hydrogen bond with the pyrazole N-H moiety on an adjacent [CuN(2)S(2)](2+) unit.  相似文献   

4.
The structure of vancomycin coordinated to Cu(2+) ions is presented and structural aspects upon metal coordination are discussed. The asymmetric part of unit cell comprises two independent molecules of vancomycin-Cu(2+) complex, one of them is partially disordered. The binding site involves one imino nitrogen atom, two amide nitrogen atoms delivered by peptide bonds, and carboxyl oxygen from the peptide moiety. The identical set of donor atoms is not reflected in identical coordination geometry around individual metal ions. The studied complex presents two distinct types of conformation. Additionally, leucinyl side chain in one conformer is disordered leading to another type of conformation. The complex molecules form heterodimer with antiparallel hydrogen bonding.  相似文献   

5.
Interaction between D-glucuronic acid and Zn(II), Cd(II), and Hg(II) metal ion salts has been studied in solution and solid complexes of the type M(D-glucuronate)X · nH2O and M(D-glucuronate)2·nH2O, where M = Zn(II), Cd(II), and Hg(II), X = Cl or Br, and n = 0–2 were isolated and characterized. Spectroscopic and other evidence indicated that in the metal-halide-sugar complexes the Zn(II) and Cd(II) ions bind to two D-glucuronate moieties via 06, 05 of the carboxyl oxygen atoms of the first and 04, 06' of hydroxyl and carbonyl groups of the second as well as to two H2O molecules, whereas in the corresponding M(D-glucuronate)2 · nH2O salts, the metal ions are bonded to two sugar anions through 06 and 06' of the ionized carboxyl groups and two water molecules, resulting in a six-coordination around each metal cation. The Hg(II) ion binds to 06 and 05 oxygen atoms of a sugar anion and to a halide anion or water molecule, in the Hg(D-glucuronate)X·nH2O compounds, while in the corresponding metal-glucuronate salt mercury is bonded to 06 and 06' of the two glucuronate anions with four-coordination around the Hg(II) ion. The β-anomer sugar conformation is predominant in the free acid and in these series of metal-sugar complexes.  相似文献   

6.
The crystal structure of bis(L-lysine)Cu(II) chloride dihydrate has been determined by X-ray analysis. The complex crystallizes in the monoclinic space group P21, with cell dimensions a = 5.189(1), b = 16.988(3), c = 11.482(2) Å, β = 93.57(1)°. The position of the Cu atom was found from a Patterson synthesis, the remaining atoms were located with DIRDIF. The structure was refined by least-squares to R = 0.060 and Rw = 0.065 for 2637 observed reflections. The copper(II) atom has an essentially square planar coordination with the two lysine molecules chelated via the carboxy oxygen and the α-amino nitrogen. However the two chlorine atoms form weak interactions with the metal to complete a strongly tetragonally elongated six-fold coordination. The two aliphatic chains have rather different geometries and are extended in a zig-zag mode. Extensive hydrogen bonding links the complex and the water molecules together.  相似文献   

7.
Single-crystal X-ray studies of a manganese(II) derivative of guanosine 5'-monophosphate, [Mn(5'-GMP)(H(2)O)(5)],3H(2)O, have shown that it is isostructural with its nickel analogue. The manganese atom therefore is bonded to five water molecules with the remaining octahedral co-ordination site being occupied by N-7 of the nucleotide base. No direct metal-phosphate bonding is involved, but there are structure-stabilizing intramolecular hydrogen bonds between two phosphate oxygen atoms and co-ordinated water molecules.  相似文献   

8.
Yang L  Wang Z  Zhao Y  Tian W  Xu Y  Weng S  Wu J 《Carbohydrate research》2000,329(4):847-853
The title compound, PrCl3.C6H12O6.9 H2O crystallized in the monoclinic space group P2(1)/n with cell dimensions a = 15.8293(3), b = 8.67750(10), c = 16.2292(3) A, beta = 107.0788(8) degrees, V = 2130.92(6) A3 and Z = 4. Each Pr ion is coordinated to nine oxygen atoms, two from the inositol and seven from water molecules, with Pr-O distances from 2.4729 to 2.6899 A; the other two water molecules are hydrogen-bonded. No direct contacts exist between Pr and Cl. There is an extensive network of hydrogen bonds formed by hydroxyl groups, water molecules, and chloride ions. The IR spectra of Pr-, Nd-, and Sm-inositol complexes are similar, which shows that the three metal ions have the same coordination mode. The IR results are consistent with the crystal structure.  相似文献   

9.
The hydrogen bonding in the crystal structure of raffinose pentahydrate   总被引:1,自引:0,他引:1  
The crystal structure of raffinose pentahydrate, O-alpha-D-galactopyranosyl-(1----6)-O-alpha-D-glucopyranosyl-(1----2)- beta-D- fructofuranose pentahydrate, C18H32O16.5H2O, has been redetermined using low-temperature, 119 K, CuK alpha X-ray data. All hydrogen atoms were unambiguously located on difference syntheses. The final R-factor is 0.036 for 2423 observed structure amplitudes. The hydrogen bonding is composed of infinite chains, which are linked through the water molecules to form a three-dimensional network containing a chain of five linked water molecules. Three of the infinite chains extend in the directions of the crystallographic axis of the space group P2(1)2(1)2(1). Four of the water molecules accept two hydrogen bonds and one accepts one. All the hydroxyls and the ring and glycosidic oxygen atoms are involved in the hydrogen bonding. With one exception, the ring and glycosidic oxygens are hydrogen-bonded by means of the minor components of unsymmetrical three-center bonds.  相似文献   

10.
Peters  David  Peters  Jane 《Molecular Engineering》1999,8(4):345-356
We report quantum mechanical computations and experimental evidence which suggest that the backbone conformation of globular proteins depends generally on the conservation of that part of the hydrogen bond network or ribbon which is joined, in general, directly to the backbone and is largely independent of the remainder of this whole network of hydrogen bonds. The familiar hydrogen bonds of the helix and the sheet form about one-half of this ribbon of hydrogen bonds. Both water molecules and hydrogen bonding side chain groups are involved in the formation of the ribbon.This view of the three-dimensional structure of globular proteins in terms of the `molecule' allows us to deal with the non-secondary structure as well as with the familiar secondary structure. It also suggests that the ribbon contains approximately the same number of hydrogen bonds within all three structures – the helix, the sheet and the coil – and that this is the reason for the ease of interconversion of these three structures.The quantum mechanical computations on hydrogen bonding suggest that delocalised water molecules which have substantial mobility are an essential part of the ribbon. This situation arises because the hydrogen bonding groups of the protein molecule are not free to move to optimise the hydrogen bonding geometries as are the oxygen atoms in the waters and ices. Such delocalised water molecules either have high B values or are invisible in the X-ray data and yet are able to form a structure which is as strong as a normal hydrogen bond.The experimental data on the point mutations of the THRI57 residue of the T4 phage lysome provides an initial test of this model. Both the local backbone conformation and the ribbon of hydrogen bonds are conserved throughout all the mutations of residue 157,providing that the delocalised water molecules are accepted as a genuine part of the structure. These mutations include the introduction of hydrocarbon side chains at position 157 when water molecules or other side chain groups take over the formation of the hydrogen bonds.We suggest that, provided steric effects are not important, many point mutations succeed because they leave the ribbon of hydrogen bonds (and so the backbone conformation) largely unchanged.  相似文献   

11.
Abstract

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Å from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

12.
Slepokura K  Lis T 《Carbohydrate research》2004,339(11):1995-2007
The crystal and molecular structures of three crystalline forms of the dihydroxyacetone dimer, C6H12O6, DHA-dimer: alpha (1a), beta (1b), and gamma (1c), the hydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3)(2) x H2O, CaCl2(DHA)2 x H2O (2a), the tetrahydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3) x 4H2O, CaCl2(DHA) x 4H2O (2b), the dihydroxyacetone monomer, C3H6O3, DHA (2c), and dihydroxyacetone dimethyl acetal, C5H12O4, (MeO)2DHA (3) are described. Compounds 1a and 2b crystallize in the triclinic system, and 1b,c, 2a,c, and 3 are monoclinic. Molecules of all forms of dihydroxyacetone dimer 1a,b, and 1c are the trans isomers, with the 1,4-dioxane ring in the chair conformation and the hydroxyl and hydroxymethyl groups in axial and equatorial dispositions, respectively. The Ca2+ ions in 2a and 2b are bridged by the carbonyl O atoms from two symmetry-related DHA molecules to form centrosymmetric dimers with Ca...Ca distance of 4.307(2)A in 2a and 4.330(2) and 4.305(2)A in two crystallographically independent dimers in 2b. DHA molecules coordinate to the Ca2+ ions by hydroxyl and carbonyl oxygen atoms. The eight-coordinate polyhedra of Ca2+ are completed by water molecule and Cl- ion in 2a and by four water molecules in 2b. The dihydroxyacetone molecules in 2a,b, and 2c are in an extended conformation, with both hydroxyl groups being synperiplanar (sp) to the carbonyl O atom. All hydroxyl groups in 2c (along with water molecules in 2a and 2b) are involved as donors in medium strong and weak intermolecular O-H...O hydrogen bonding. Some of them, as well as carbonyl O atoms or Cl- ions in 2a and 2b, act as acceptors in C-H...O (and C-H...Cl) hydrogen interactions.  相似文献   

13.
Pant K  Crane BR 《Biochemistry》2006,45(8):2537-2544
The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N(omega)-hydroxy-l-arginine (NOHA) compared to the substrate l-arginine (l-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both l-Arg and NOHA is more bent than the Fe(II)-NO, l-Arg complex of mammalian eNOS [Li, H., Raman, C. S., Martasek, P., Masters, B. S. S., and Poulos, T. L. (2001) Biochemistry 40, 5399-5406]. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N(omega) atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the l-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.  相似文献   

14.
The integral parameter of the physical state of liquid water, its stoichiometric composition, is considered. This factor takes into account that the substance of liquid water contains hydrogen and oxygen atoms in the proportion other than the ideal 2: 1 ratio characteristic of a separate water molecule. The stoichiometry index x of water — the deviation from the ideal ratio — is shown to be an independent metastable variable that determines equilibrium concentrations of the oxygen-hydrogen molecules. The optical method for measuring x is suggested, and a laser interferometer is described that is capable of measuring the stoichiometry index to an accuracy of 10?5. Possible applications of the instrument in biophysics of water systems are discussed.  相似文献   

15.
The biological conversions of O(2) and peroxides to water as well as certain incorporations of oxygen atoms into small organic molecules can be catalyzed by metal ions in different clusters or cofactors. The catalytic cycle of these reactions passes through similar metal-based complexes in which one oxygen- or peroxide-derived oxygen atom is coordinated to an oxidized form of the catalytic metal center. In haem-based peroxidases or oxygenases the ferryl (Fe(IV)O) form is important in compound I and compound II, which are two and one oxidation equivalents higher than the ferric (Fe(III)) form, respectively. In this study we report the 1.35 A structure of a compound II model protein, obtained by reacting hydrogen peroxide with ferric myoglobin at pH 5.2. The molecular geometry is virtually unchanged compared to the ferric form, indicating that these reactive intermediates do not undergo large structural changes. It is further suggested that at low pH the dominating compound II resonance form is a hydroxyl radical ferric iron rather than an oxo-ferryl form, based on the short hydrogen bonding to the distal histidine (2.70 A) and the Fe...O distance. The 1.92 A Fe...O distance is in agreement with an EXAFS study of compound II in horseradish peroxidase.  相似文献   

16.
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

17.
Abstract Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na(+) or K(+) ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 ? from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na(+) counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na(+) ions, within the quadruplex cavity, are more mobile than coordinated K(+) ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

18.
《Inorganica chimica acta》2001,312(1-2):133-138
The crystal structure and the EPR characterization of the compound Cu [C13H13N3O3] is reported. It crystallizes in the P212121 space group, with a=8.2829(5), b=9.347(2), c=16.499(2) Å and Z=4. The copper ion is in a distorted square planar coordination, bonded to two nitrogen and one oxygen atoms from one dipeptide and to an oxygen atom from a symmetry-related molecule. Thus, neighbor copper atoms at 5.14 Å are connected by equatorial synanti carboxylate bridges giving rise to a chain structure along the b-axis. The chains are connected via hydrogen bonds and cation–π interactions, the latter being provided by the ‘sandwich’ structure involving each copper atom and two tryptophan residues from neighbor molecules. The EPR spectra of polycrystalline sample imply an essentially dx2y2 ground state orbital for the Cu(II) ions. The g-values reflect a slightly distorted axial symmetry around the Cu(II) ions as expected from the structural results. No hyperfine interaction is observed, which is indicative of the presence of exchange interactions between the copper atoms as suggested by the X-ray results as well.  相似文献   

19.
The structure of the sulphydryl protease, actinidin, after refinement at 1.7 Å resolution, is described. The positions of most of the 1666 atoms have been determined with an accuracy better than 0.1 Å; only two residues (219 and 220) and the side-chain of a third (87) cannot be seen. In addition, the model contains 272 solvent molecules, all taken as water, except one which may be an ammonium ion. Atomic B values give a good indication of the mobility of different parts of the structure. Actinidin has a double domain structure, with one domain mostly helical in its secondary structure, and the other domain built around a twisted β-sheet. The geometry of hydrogen bonds in helices, β-structure and turns has been analysed. All are significantly non-linear, with the angle N-?…O ~160 °. Carbonyl groups are tilted outwards from the axis of each helix, the tilting apparently unaffected by whether or not additional hydrogen bonds are made (e.g. to water or side-chain atoms). Each domain is folded round a substantial core of non-polar side-chains, but the interface between domains is mostly polar. Interactions across this interface involve a network of eight buried water molecules, the buried carboxyl and amino groups of Glu35, Glu50, Lys181 and Lys17, other polar side-chains and a few hydrophobic groups. One other internal charged side-chain, that of Glu52, is adjacent to a buried solvent molecule, probably an ammonium ion. Other side-chain environments are described. One proline residue has a cis configuration. The sulphydryl group is oxidized, probably to SO2?, with one oxygen atom clearly visible but the other somewhat less certain. The active site geometry is otherwise compatible with the mechanism proposed by Drenth et al. (1975,1976) for papain. The positions of the 272 solvent molecules are described. The best-ordered water molecules are those that are internal (total of 17), in surface pockets, or in the intermolecular contact regions. These generally form three or four hydrogen bonds, two to proton acceptors and one or two to proton donors. Other water molecules make water bridges on the surface, sometimes covering the exposed edges of non-polar groups. Intermolecular contacts involve few protein atoms, but many water molecules.  相似文献   

20.
Neutron diffraction augmented with hydrogen isotope substitution has been used to examine the water structure around the acetylcholine molecular ion in aqueous solution. It is shown that the nearest-neighbor water molecules in the region around the trimethylammonium headgroup are located either in a ring around the central nitrogen atom or between the carbon atoms, forming a sheath around the onium group. Moreover the water molecules in this cavity do not bond to the onium group but rather form hydrogen bonds with water molecules in the surrounding aqueous environment. Given that in the bound state the onium headgroup must be completely desolvated, the absence of bonding between the onium headgroup and the surrounding water solvent may be selectively favorable to acetylcholine-binding in the receptor site. Away from the headgroup, pronounced hydrogen-bonding of water to the carbonyl oxygen is observed, but not to the ether oxygen in the acetylcholine chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号