首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of D-[1-14C]glucose, D-[6-14C]glucose, D-[1-14C]fructose and D-[6-14C]fructose by leafy spurs of Itea plants results in rapid incorporation of label into allitol and D-allulose. The patterns of labelling found in the allitol and D-allulose are discussed, a direct interconversion from D-glucose and D-fructose being indicated. Allitol has been found to be an active metabolite in Itea plants.  相似文献   

2.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

3.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

4.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

5.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

6.
The reaction of N-[1-13C] acetylimidazole with cytochrome c and guanidinated cytochrome c was evaluated as a means of introducing NMR-detectable groups as conformation-dependent probes. Resonances from both N-[1-13C]acetyl lysyl and O-[1-13C]acetyl tyrosyl groups were observed when ferricytochrome c was acetylated. However, only O-[1-13C]acetyl tyrosyl resonances were seen with acetylated guanidinated ferricytochrome c. Chemical shifts of the four O-[1-13C]acetyl tyrosyl groups were conformation dependent and ranged from 172 to 176 ppm. A convenient method for the preparation of N-[1-13C]acetylimidazole is described.  相似文献   

7.
8.
Homogenates of adult Schistosoma mansoni contain enzymes which transferred [14C]mannose, [14C]glucose, and [14C]galactose from GDP-[U-14C]mannose, UDP-[U-14C]glucose, and UDP-[U-14C]galactose respectively to a lipid acceptor; in comparison, free [14C]mannose, GDP-[U-14C]fucose, and UDP-[U-14C]acetyl-glucosamine were poorly transferred. The lipid acceptor is believed to be an intermediate in the glycosylation of the worm's glycoproteins and in the biosynthesis of oligosaccharides and glycolipids. The tegument of adult worms was isolated by the freeze-thaw procedure and sugars associated with macromolecules in this fraction were analyzed; the major monosaccharide components were glucose, galactose, and mannose. These results suggest that the mechanism of glycosylation of the adult schistosome's tegumental macromolecules may occur through the glycosyl transferase system. The schistosome mannosyl transferase (EC 2.4.1), which is membrane bound was solubilized with 0.1% Triton X-100 without loss of activity; after density gradient centrifugation there was a peak of enzymic activity in a region of density 1.08, which could not be associated with any particular organelle.  相似文献   

9.
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-13C]glucose+[4,5,6-13C]glucose, [2-13C]glucose+[4,5,6-13C]glucose, and [3-13C]glucose+[4,5,6-13C]glucose and developed a new method to measure 13C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells.  相似文献   

10.
Biosynthesis of N-methyl-l-glucosamine moiety of streptomycin from d-glucose by Streptomyces griseus was studied. A mixture of d-[1-14C]glucose and d-[6-3H]glucose was given to the culture of S. griseus. The 3H/14C ratio found in N-methyl-d-glucosamine further supports a mechanism that the conversion of d-glucose to l-hexose is carried out without scission of carbon skeleton. When d-[1-14C]glucose and d-[3-3H]glucose were used, the fall of 3H/14C ratio in N-methyl-l-glucosamine showed that the hydrogen atom at C-3 plays a rôle in such a transformation.  相似文献   

11.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

12.
Mannose in N-glycans is derived from glucose through phosphomannose isomerase (MPI, Fru-6-P ↔ Man-6-P) whose deficiency causes a congenital disorder of glycosylation (CDG)-Ib (MPI-CDG). Mannose supplements improve patients'' symptoms because exogenous mannose can also directly contribute to N-glycan synthesis through Man-6-P. However, the quantitative contributions of these and other potential pathways to glycosylation are still unknown. We developed a sensitive GC-MS-based method using [1,2-13C]glucose and [4-13C]mannose to measure their contribution to N-glycans synthesized under physiological conditions (5 mm glucose and 50 μm mannose). Mannose directly provides ∼10–45% of the mannose found in N-glycans, showing up to a 100-fold preference for mannose over exogenous glucose based on their exogenous concentrations. Normal human fibroblasts normally derive 25–30% of their mannose directly from exogenous mannose, whereas MPI-deficient CDG fibroblasts with reduced glucose flux secure 80% of their mannose directly. Thus, both MPI activity and exogenous mannose concentration determine the metabolic flux into the N-glycosylation pathway. Using various stable isotopes, we found that gluconeogenesis, glycogen, and mannose salvaged from glycoprotein degradation do not contribute mannose to N-glycans in fibroblasts under physiological conditions. This quantitative assessment of mannose contribution and its metabolic fate provides information that can help bolster therapeutic strategies for treating glycosylation disorders with exogenous mannose.  相似文献   

13.
The hydrogen isotope-effect that occurs in vitro during myo-inositol 1-phosphate synthase-catalyzed conversion of d-[5-3H]glucose 6-phosphate into myo-[2-3H]inositol 1-phosphate has been used to compare the functional role of the nucleotide sugar oxidation-pathway with that of the myo-inositol oxidation-pathway in germinating lily pollen. Results reveal a significant difference between the 3H/14C ratios of glucosyl and galactosyluronic residues from pectinase-amyloglucosidase hydrolyzates of the 70 % ethanol-insoluble fraction of d-[5-3H, 1-14-C]glucose-labeled, germinating lily pollen. This isotope effect at C-5 of d-glucose that occurred during its conversion into d-galactosyluronic residues of pectic substance is not explained by loss of 3H when UDP-d-[5-3H, 1-14C]glucose is oxidized by UDP-d-glucose dehydrogenase from germinating lily pollen. The evidence obtained from this study favors a functional role for the myo-inositol oxidation pathway during in vivo conversion of glucose into galactosyluronic residues of pectin in germinating lily pollen.  相似文献   

14.
Multicolanic, multicolic, and multicolosic acids, metabolites of Penicillium multicolor, are shown by chemical transformations and spectroscopic methods to be 4-ylidenetetronic acids with structures (I), (II), and (III), respectively. The biosynthesis of these metabolites from acetate, via oxidative fission of preformed 6-pentylresorcylic acid is established by incorporation studies with [1-13C]-, [2-13C]-, [1,2-13C]acetate and ethyl [2-14C]-6-pentylresorcylate.  相似文献   

15.
The in vitro cultured liverwort Jungermannia subulata produces the unique molecule subulatin. In this study, we examined the incorporation of [1-13C] and [1,2-13C2] glucose, [2-13C] arabinose, [2-13C] caffeic acid, and [1-13C] phenylalanine into subulatin. The trilobatinoic acid C unit of subulatin incorporated 13C atoms from [1-13C] and [1,2-13C2] glucose and from [2-13C] arabinose but not from any other of the other precursors. Based on these results and labeling patterns, the trilobatinoic acid C unit of subulatin appears to be biosynthesized from arabinose-5-phosphate and phosphoenolpyruvate.  相似文献   

16.
17.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

18.
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1-13C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1-13C]-hexoses to [6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and those phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and plastid.Key words: Daucus carotaL., cell suspensions, carbon-13 nuclear magnetic resonance, 13C-NMR, carbohydrate cycling, oxidative pentose phosphate pathway, plastid.   相似文献   

19.
  • 1.1. The generation of C2- and C3-deuterated l-lactate was monitored by 13C NMR in human erythrocytes exposed to d-[1-13glucose, d-[2-13C]glucose or d-te-13C]glucose and incubated in a medium prepared in D2O.
  • 2.2. The results suggested that the deuteration of the C1 of d-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of d-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O.
  • 3.3. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and l-alanine in the reaction catalyzed by glutamate-pyruvate transaminase.
  • 4.4. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate.
  • 5.5. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates.
  相似文献   

20.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号