首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium oxalate (CaOx) is the most common component of human kidney stones. Heterogeneous nucleation is regarded as the key mechanism in this process. In this study, we have used an imprinted 6-methacrylamidohexanoic acid/divinylbenzene co-polymer as a biomimetic surface to nucleate CaOx crystal formation. The polymer was imprinted with either calcium oxalate monohydrate (COM) or dihydrate (COD) template crystals. These were washed out of the polymer, which was then immersed in various test solutions. The test solutions were an aqueous solution of calcium chloride and sodium oxalate, artificial urine and a sample of real urine. Crystals that formed on the polymer surface were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, atomic absorption spectroscopy and scanning electron microscopy. Results showed that in the aqueous solution the COM-imprinted polymer induced the nucleation of COM. The COD-imprinted polymer induced only trace amounts of COD crystallization, together with larger quantities of COM. In artificial and real urines, COM also specifically precipitated on the COM-imprinted surface. The results show that, at least to some extent, the imprinted polymers direct formation of their morphologically matched crystals. In the case of COD, however, it appears that either rapid hydrate transformation of COD to COM occurs, or the more stable COM polymorph is directly co-precipitated by the polymer. Our results support the hypothesis that heterogeneous nucleation plays a key role in CaOx stone formation and that the imprinted polymer model could provide an additional and superior diagnostic tool for stone researchers to assess stone-risk in urine.Abbreviations COD calcium oxalate dihydrate - COM calcium oxalate monohydrate - COT calcium oxalate trihydrate - dvb divinylbenzene - 6-maaha 6-methylacrylamidohexanoic acid  相似文献   

2.
The rate of dissolution of calcium oxalate monohydrate and of a calcium oxalate renal stone was measured in 0.9% NaCl solution at different levels of magnesium concentration and pH. The growth of calcium oxalate obtained by chemical reaction between Ca2+ and oxalate ions at a concentration similar to that existing in normal urine was also investigated as a function of pH and magnesium concentration. It was found that both magnesium and pH exert a fine kinetic control on the precipitation and growth of calcium oxalate monohydrate. Magnesium had no effect on the dissolution. The possible role of magnesium and pH in calcium oxalate urolithiasis has been discussed in the light of previous reports and of the data presented in this study.  相似文献   

3.
Kidney Stones     
The prevalence of kidney stones has steadily risen during this century; passage of a calculus and a positive family history increase the probability of recurrence. Findings from recent studies on the cause of renal calculi have stressed crystallization and crystal aggregation of stone minerals from supersaturated urine, rather than excessive organic matrix. Absence of normal urine inhibitors of calcium salts is also stressed. Formation of calcium oxalate stones is the major problem. Therapy with decreased calcium and oxalate intake, thiazides, phosphate salts and allopurinol in various combinations has substantially decreased the prevalence of recurrent stones. The rationale for the use of allopurinol is that uric acid salts enhance the tendency for calcium oxalate to crystallize from supersaturated urine. The hypercalciuria seen in 30 percent to 40 percent of patients with oxalate stones is usually caused by intestinal hyperabsorption of calcium. Although patients with uric acid calculi constitute only a small fraction of those in whom stones form, they represent a group in whom good medical therapy, based on sound physiologic principles, has proved extremely successful. Renal tubular syndromes lead to nephrocalcinosis and lithiasis through hypercalciuria, alkaline urine and hypocitraturia, the latter an inhibitor of calcium salt precipitation. Recent advances in surgical techniques are discussed, including the rationale for removing staghorn calculi. The ileal ureter and coagulum pyelolithotomy deserve special emphasis.  相似文献   

4.
G. Pylypchuk  U. Ehrig  D. R. Wilson 《CMAJ》1979,120(6):658-665
The propensity of urine to promote calcium stone formation was compared in 64 patients with recurrent idiopathic calcium nephrolithiasis and 30 healthy individuals without such a history. The rates of excretion of urine crystalloids, the urine saturation with brushite (CaHPO4-2H2O), the ability of the urine to calcify collagen in vitro, and the concentration of urine inhibitors of collagen calcification were measured. The patients had a reduced urine citrate excretion rate in addition to an increased urine calcium excretion rate, while the rates for urine magnesium, phosphate, uric acid and oxalate were not significantly different in the two groups of subjects. The urine concentration of magnesium, phosphate and uric acid was decreased in the patients because of the higher urine volume. The urine creatinine excretion rate correlated with the rates of excretion of urine calcium, magnesium, phosphate, uric acid and oxalate in both groups, which suggested that increased lean body mass, possibly associated with greater food intake, may be an important determinant of crystalloid excretion. The urine of the patients was significantly more saturated with brushite than the urine of the control subjects and resulted in greater collagen calcification when incubated in vitro. The urine concentration of inhibitors of collagen calcification, however, was not significantly different in the two groups. Thus, the urine of patients with recurrent idiopathic calcium nephrolithiasis is more highly saturated with brushite, largely as a result of an increased urine calcium excretion rate, and contains a lower concentration of magnesium and citrate, substances that tend to prevent the precipitation and growth of crystals in urine.  相似文献   

5.
Struvite urinary calculi, which are composed of magnesium, ammonium, and phosphate, can cause complications including sepsis and renal failure. Struvite calculi were identified within the urinary bladder and renal pelvis of 2 Long-Evans rats that died within days after arrival from a commercial vendor. The remaining rats in the shipment were screened by physical examination, radiography, and ultrasonography, revealing an additional 2 animals that were clinically affected. These rats were euthanized, necropsied, and yielded similar findings to those from the first 2 rats. In addition, urine samples had an alkaline pH and contained numerous bacteria (predominantly Proteus mirabilis), leukocytes, and crystals. All calculi were composed completely of struvite. Another 7 rats in the shipment had alkaline urine with the presence of blood cells; 6 of these rats also had abundant struvite crystals, and P. mirabilis was cultured from the urine of 3 rats. Further investigation by the vendor identified 2 of 100 rats with struvite calculi from the same colony. Although no specific cause could be implicated, the fact that all the affected rats came from the same breeding area suggests a genetic or environmental triggering event; a contribution due to diet cannot be ruled out. Our findings suggest that the affected rats had metabolic disturbances coupled with bacterial infection that predisposed them to develop struvite calculi. During sudden increases of struvite urinary calculi cases in rats, urine cultures followed by appropriate surgical intervention and antibiotic therapy is warranted. Additional factors, including diet, merit attention as well.Struvite, also known as triple phosphate, is a crystalline substance composed of magnesium ammonium phosphate (MgNH4PO4• 6 H20)10 that was first identified in the 18th century. This mineral is what consolidates into urinary calculi, or stones, both in humans and animals. Other frequently encountered types of urinary stones include calcium oxalate, calcium phosphate, uric acid, and cysteine.17 Although only 2% to 3% of stones from humans are composed of struvite,43 struvite calculi are important clinically because they can lead to sepsis and renal failure.43In both humans and animals, stones in the urinary tract can obstruct the urine outflow, with subsequent extreme pain, hydronephrosis, and (possibly) rupture of the urinary bladder. In addition, disruption of kidney function can lead to metabolic imbalances, such as uremia, seizures, depression, anorexia, dehydration, even coma and death.1,8 Here we present a case study describing the spontaneous presentation of struvite urolithiasis in a recently imported cohort of rats and related significant clinical findings.  相似文献   

6.
Objective: The aim of the study was to assess the influence of overweight and obesity on the risk of calcium oxalate stone formation. Research Methods and Procedures: BMI, 24‐hour urine, and serum parameters were evaluated in idiopathic calcium oxalate stone formers (363 men and 164 women) without medical or dietetic pretreatment. Results: Overweight and obesity were present in 59.2% of the men and in 43.9% of the women in the study population. Multiple linear regression analysis revealed a significant positive relationship between BMI and urinary uric acid, sodium, ammonium, and phosphate excretion and an inverse correlation between BMI and urinary pH in both men and women, whereas BMI was associated with urinary oxalate excretion only among women and with urinary calcium excretion only among men. Serum uric acid and creatinine concentrations were correlated with BMI in both genders. Because no association was established between BMI and urinary volume, magnesium, and citrate excretion, inhibitors of calcium oxalate stone formation, the risk of stone formation increased significantly with increasing BMI among both men and women with urolithiasis (p = 0.015). The risk of calcium oxalate stone formation, median number of stone episodes, and frequency of diet‐related diseases were highest in overweight and obese men. Discussion: Overweight and obesity are strongly associated with an elevated risk of stone formation in both genders due to an increased urinary excretion of promoters but not inhibitors of calcium oxalate stone formation. Overweight and obese men are more prone to stone formation than overweight women.  相似文献   

7.
8.
Plasma levels and urinary amino acid excretions were estimated by high-performance liquid chromatography in 15 control subjects and 36 stone formers (SFs) classified according to the stone type: (1) 22 cases with calcium oxalate stones; (2) four cases with pure uric acid stones; (3) 10 cases with magnesium-ammonium phosphate stones, either pure or mixed with apatite. Some types of stones (namely oxalate and uric acid calculi) are mainly formed as a result of a metabolic deficiency that may affect the amino acid metabolism, and thus may be reflected in the urinary amino acid pattern. Data demonstrated clearly that there is a general tendency towards decreased amino acid excretions in all SFs with all types of stones. As a whole, one can observe a higher percentage of patients with calcium oxalate and phosphate calculosis, who have low urine excretions of amino acids; about 50% are the SFs with lower urine excretion of serine, glycine, taurine and i-leucine; the high percentage of patients with CaOX calculi shows lower urine excretions of tyrosine and ornithine.  相似文献   

9.
The oxalate–carbonate pathway involves the oxidation of calcium oxalate to low‐magnesium calcite and represents a potential long‐term terrestrial sink for atmospheric CO 2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non‐sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.  相似文献   

10.

Background and Objectives

Sodium thiosulfate (STS) reduced calcium stone formation in both humans and genetic hypercalciuric stone forming (GHS) rats. We sought to measure urine chemistry changes resulting from STS administration in people.

Design, Setting, Participants & Measurements

STS was given to healthy and hypercalciuric stone forming adults. Five normal non-stone forming adults (mean age 33 years), and 5 people with idiopathic hypercalciuria and calcium kidney stones (mean age 66 years) participated. Two baseline 24-hour urine collections were performed on days 2 and 3 of 3 days of self-selected diets. Subjects then drank STS 10 mmol twice a day for 7 days and did urine collections while repeating the self-selected diet. Results were compared by non-parametric Wilcoxon signed rank test. The primary outcome was the resulting change in urine chemistry.

Results

STS administration did not cause a significant change in urinary calcium excretion in either group. In both groups, 24 hour urinary ammonium (P = 0.005) and sulfate excretion (P = 0.007) increased, and urinary pH fell (P = 0.005); citrate excretion fell (P<0.05) in hypercalciuric participants but not in non-stone formers. Among stone formers with hypercalciuria, 3 of 5 patients had measurement of serum HCO3 concentration after the STS period: it did not change. The net effect was an increase in supersaturation of uric acid, and no change in supersaturation of calcium oxalate or calcium phosphate.

Conclusions

The basis for studies demonstrating that STS prevented stones in rats and people was not reflected by the changes in urine chemistry reported here. Although serum HCO3 did not change, urine tests suggested an acid load in both non-stone forming and hypercalciuric stone-forming participants. The long term safety of STS needs to be determined before the drug can be tested in humans for long-term prevention of stone recurrence.  相似文献   

11.
There are a need for novel, economical and efficient metal processing technologies to improve critical metal sustainability, particularly for cobalt and nickel which have extensive applications in low-carbon energy technologies. Fungal metal biorecovery processes show potential in this regard and the products of recovery are also industrially significant. Here we present a basis for selective biorecovery of Co and Ni oxalates and phosphates using reactive spent Aspergillus niger culture filtrate containing mycogenic oxalate and phosphate solubilized from struvite. Selective precipitation of oxalates was achieved by adjusting phosphate-laden filtrates to pH 2.5 prior to precipitation. Co recovery at pH 2.5 was high with a maximum of ~96% achieved, while ~60% Ni recovery was achieved, yielding microscale polyhedral biominerals. Co and Ni phosphates were precipitated at pH 7.5, following prior oxalate removal, resulting in near-total Co recovery (>99%), while Ni phosphate yields were also high with a recovery maximum of 83.0%.  相似文献   

12.
Struvite (magnesium ammonium phosphate-MgNH4PO4·6H2O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2O4).2H2O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO43−) and magnesium (Mg2+), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.  相似文献   

13.
We studied the formation of exocellular precipitates of struvite (Mg NH4PO4.6H2O) by 96 kinds of calcite‐pro‐ducing bacterial strains isolated from soil. We also studied the influence of calcium ions on struvite precipitation. The number of strains producing struvite was 20. Only four consistently formed large amounts. These results seem to indicate that the bacterial precipitation of struvite is not a general phenomenon. The strains studied were taxonomically identified, and no relationship was found between the production of struvite and the taxonomic identity of such strains. Calcium, supplied as Ca acetate in the culture medium, appeared to inhibit the biological precipitation of struvite.  相似文献   

14.
D. R. Wilson  G. Pylypchuk  U. Ehrig 《CMAJ》1979,120(6):666-669
Normocalciuric and hypercalciuric patients with idiopathic recurrent calcium nephrolithiasis were compared with healthy individuals without such a history to examine the factors that predispose normocalciuric patients to stone formation. The urine calcium excretion rate was higher in the normocalciuric patients than in the control subjects (227 v. 183 mg/24 h; P less than 0.01), but the urine calcium concentration was not significantly different. The urine magnesium and citrate excretion rates and concentrations were lower in the normocalciuric patients than in the control subjects (P less than 0.001), while the urine uric acid and oxalate excretion rates and concentrations and the urine saturation with brushite (CaHPO4-2H2O) were not significantly different. These results suggest the importance of slight increases in the urine calcium excretion rate together with decreased urine magnesium and citrate excretion rates in normocalciuric persons with recurrent calcium stone formation. The urine of the hypercalciuric patients was more highly saturated with brushite than the urine of the normocalciuric patients and the control subjects, and the excretion rates of uric acid and oxalate were increased in the hypercalciuric patients. The hypercalciuric patients had a higher urine creatinine excretion rate than the normocalciuric patients and a higher daily urine volume than the control subjects, which suggests that differences in lean body mass or fluid and food intake, or both, may be important determinants of these differences in crystalloid excretion. As in the normocalciuric patients, the urine citrate excretion rate and concentration were decreased in the hypercalciuric patients compared with the control subjects.  相似文献   

15.

We studied the influence of pH and the phosphate content of the culture medium on the precipitation of struvite by Myxococcus xanthus, a bacterium that undergoes autolysis at the end of its exponential growth phase in liquid cultures. The best results were obtained with pH values between 7.2 and 8.0 and with a phosphate concentration of 10 mM. Our studies reveal for the first time that the precipitation of struvite always begins at the onset of autolysis and that culture conditions favoring the early occurrence of autolysis also enhance struvite production.  相似文献   

16.
The study involved 30 patients treated with nifedipine in daily dose of 30 mg for 7 days. Calcium, magnesium, phosphate, oxalate, and uric acid levels in the urine were measured. It was found that nifedipine significantly decreased oxaluria urinary excretion of calcium, magnesium, phosphate, and uric acid remained unchanged following nifedipine therapy. Results may suggest that nifedipine may exert an influence on renal stone formation.  相似文献   

17.
Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate.   总被引:3,自引:0,他引:3  
Seeds of monosodium urate caused heterogeneous nucleation of calcium oxalate at pH 5.7 and 6.7, and of calcium phosphate at pH 5.3, 5.7, and 6.7 from metastably supersaturated solutions in vitro. Seeds of uric acid had a small or no effect. The results could account for the formation of calcium stones among patients with hyperuricosuria and normocalciuria.  相似文献   

18.
In order to determine the mechanism of urinary stone formation in patients with hyperuricemia, we analyzed the crystal components and matrix proteins in a urinary stone from such a patient. Micro-area X-ray spectrometry and infrared (IR) spectroscopy suggested that the outside of the stone was composed of calcium oxalate monohydrate (COM) and the inside of uric acid (UA). Proteomic analysis identified 37 and 14 proteins from the inside and outside of the stone, respectively, as matrix proteins. The proteins that were identified in an ethylenediaminetetraacetic acid (EDTA) fraction were able to bind calcium ions. Thus, calcium-binding proteins may play a significant role in the formation of urinary stones in patients with hyperuricemia.  相似文献   

19.
Piloderma fallax is an ectomycorrhizal fungus commonly associated with several conifer and hardwood species. We examined the formation of calcium oxalate crystals by P. fallax in response to calcium (0.0, 0.1, 0.5, 1, and 5 mM) and phosphorus (0.1 and 6 mM) additions in modified Melin-Norkrans agar medium. Both calcium and phosphorus supplementation significantly affected the amount of calcium oxalate formed. More calcium oxalate was formed at high P levels. Concentrations of soluble oxalate in the fungus and medium were higher at low P levels. There was a strong positive linear relationship between Ca level and calcium oxalate but only under conditions of phosphorus limitation. Calcium oxalate crystals were identified as the monohydrate form (calcium oxalate monohydrate [COM] whewellite) by X-ray diffraction analysis. Prismatic, styloid, and raphide forms of the crystals, characteristic COM, were observed on the surface of fungal hyphae by scanning electron microscopy. P. fallax may be capable of dissolving hyphal calcium oxalate under conditions of limited Ca. The biomineralization of calcium oxalate by fungi may be an important step in the translocation and cycling of Ca and P in soil.Many fungi from forest litter, including ectomycorrhizal fungi, exhibit calcium oxalate (CaOx) crystals on their hyphae. The ubiquity of CaOx crystals on fungal hyphae suggests that their formation may provide a selective advantage to the organism (4). CaOx formation is hypothesized to regulate intracellular pH and levels of oxalate and Ca and, hence, serves as a major sink for toxic amounts of Ca in soil and other environments (52, 53, 61). In plants, CaOx crystals have also been proposed to serve as a calcium source under conditions of calcium limitation (14, 18, 41), but such a process has yet to be established among fungi.CaOx on fungal hyphae is formed from soil-derived calcium and biologically synthesized oxalate. Oxalate released by ectomycorrhizae has been correlated with increased phosphorus bioavailability in the rhizosphere (V. Casarin, cited by Hinsinger in reference 25). The ability of oxalate to chelate metal ions makes it important in the solubilization and transport of metals in soil, the weathering and diagenesis of rocks and soil minerals (9, 23, 31, 57), and, consequently, the transport of nutrients. It is generally presumed that CaOx crystals form on the surface of fungal hyphae as a result of precipitation when released oxalic acid interacts with calcium cations (23, 43). However, the regularity of the CaOx crystals suggests that their formation is regulated and that they may be formed within the fungal hyphae at specific sites of origin (3, 5, 7).CaOx crystals vary in morphology, ranging from plates to raphides, druses, tetragonal bipyramids, and prisms. This variation in morphology can be seen among fungal genera and species (4). The crystals also usually occur either as CaOx monohydrate (COM; whewellite) (29) or CaOx dihydrate (weddellite) (3, 5, 28, 35, 60). Either crystal form or both may be present on fungal hyphae at the same time.In earlier studies (8, 9), we reported that Piloderma fallax is one of the major species of ectomycorrhizal fungi in subboreal forests. In addition, Piloderma sp. is found in temperate forest soils in association with conifer and hardwood species (34). Piloderma influences nutrient uptake and modifies mineral transformation in rock and soil systems (3, 33). In this study, we chose P. fallax because of (i) its ability to produce oxalate and form CaOx crystals (8, 56), (ii) its presence in many types of forest ecosystems, and (iii) its significant role in the breakdown and formation of soil minerals (9).The objective of this study was to quantify and characterize the formation of CaOx by P. fallax in response to various P and Ca levels in agar medium. We tested the hypothesis that P limitation will induce the production of oxalate and that increased concentrations of Ca will result in greater CaOx formation. This study also examined the dissolution of CaOx on P. fallax when it is grown on Ca-deficient medium and determined whether CaOx can serve as temporary Ca storage. Our study was conducted to add to knowledge of the ecological significance of CaOx, especially of its influence in biogeochemical cycling of P and Ca in soils.  相似文献   

20.
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号