首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1 → 4)-α-d-Glucan 4-glucosyltransferase (EC2.4.1.19) of klebsiella pneumoniae transforms maltose (G2) into d-glucose (G1) and a mixture of malto-oligosaccharides (G2—G9), and maltotriose (G3) into Gl—Gll in addition to cyclo-hexa-, -hepta-, and -octa-amyloses (cG6—8). It produces a similar mixture, but with higher amounts of G2—G11, by transfer from cyclohexaamylose to G1. By using p-nitrophenyl α- and β-d-glucosides, 4 methylumbelliferyl α-d-glucoside, and strophanthyl α-d-glucoside as acceptors and cyclohexaamylose as donor, a homologous series of substituted malto-oligosaccharides having chain lengths of up to 12 d-glucose residues was produced. High-pressure liquid chromatography on Bio-Gel P2 permitted separation of these products of transferase activity on analytical and preparative scales. By the same technique, the nitration product of phenyl hepta-O-acetyl-α-maltoside, after deacetylation, was separated into about equal amounts of the o- and p-isomers. The synthetic p-nitrophenyl α-maltoside (pNPG2) was used to identify the first member of the series of biochemical transfer-products. p-Nitrophenyl maltotrioside (pNPG3) and maltotetraoside (pNPG4) were shown to be the higher homologues. They are very good substrates for human and pig-pancreatic alpha amylase. This substrate behavior may be measured conveniently in the case ofpNPG3 by the rapid liberation of nitrophenolate; the enzyme used pNPG4 only on addition of α-d-glucosidase. Human-parotis amylase of equal starch-splitting activity as the pancreatic enzyme acts upon pNPG3 and pNPG4 but about 100 times more slowly.  相似文献   

2.
The principle of competitive binding assay in combination with an immobilized lectin (concanavalin A), in close proximity to an oxygen sensor, has been used to quantify carbohydrates and to determine association constants for lectin-carbohydrate interactions. Methyl α-d-mannopyranoside was determined down to 0.5 μg/ml. Ka (maltose) and Ka (maltotriose) was found to be 2.1 × 103 and 1.7 × 103m?1, respectively, which are comparable to values quoted in the literature of approximately 2.8 × 103m?1 for both maltose and maltotriose. Furthermore, the estimation of the bonus effect, due to multipoint attachment, for a low-molecular-weight dextran is discussed.  相似文献   

3.
Summary Maltotriose transport was studied in two brewer's yeast strains, an ale strain 3001 and a lager strain 3021, using laboratory-synthesized14C-maltotriose. The maltotriose transport systems preferred a lower pH (pH 4.3) to a higher pH (pH 6.6). Two maltotriose transport affinity systems have been indentified. The high affinity system hasK m values of 1.3 mM for strain 3021 and 1.4 mM for strain 3001. The low affinity competitively inhibited by maltose and glucose withK i values of 58 mM and 177 mM. respectively, for strain 3021, and 55 mM and 147 mM, respectively, for strain 3001. Cells grown in maltotriose and maltose had higher maltotriose and maltose transport rates, and cells grown in glucose had lower maltortriose and maltose transport rates. Early-logarithmic phase cells transported glucose faster than either maltose or maltotriose. Cells harvested later in the growth phase had increased maltotriose and maltose transport activity. Neither strain exhibited significant differences with respect to maltose and maltotriose transport activity.  相似文献   

4.
《Process Biochemistry》2014,49(3):423-429
The β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous (Xd-INV) catalyzes the synthesis of neo-fructooligosaccharides (neo-FOS of the 6G-series), which contain a β(2  6) linkage between a fructose and the glucosyl moiety of sucrose. In this work we demonstrate that the enzyme is also able to fructosylate other carbohydrates that contain glucose, in particular disaccharides (maltose, isomaltulose, isomaltose, trehalose) and higher oligosaccharides (maltotriose, raffinose, maltotetraose), but not monosaccharides (glucose, fructose, galactose). With maltose as acceptor, the reaction in the presence of Xd-INV proceeded with high regioselectivity; the product was purified and chemically characterized, and turned out to be 6′-O-β-fructosylmaltose (neo-erlose). Using 100 g/L sucrose as fructosyl donor and 300 g/L maltose as acceptor, the maximum concentration of neo-erlose was 38.3 g/L. Thus, novel hetero-fructooligosaccharides with potential applications in the functional food and pharmaceutical industries can be obtained with Xd-INV.  相似文献   

5.
Pea (Pisum sativum L.) chloroplast D-enzyme (4-α-d-glucanotransferase, EC 2.4. 1.25) was purified greater than 750-fold and partially characterized. It is a dimer with a subunit Mr of ca. 50,000. Optimal activity is between pH 7.5 and 8.0 with maltotriose as substrate and the enzyme's Km for maltotriose is 3.3 millimolar. Chloroplast D-enzyme converts maltotriose to maltopentaose and glucose via the exchange of α-1,4-glycosidic linkages. Maltotriose acts either as a donor or acceptor of a maltosyl group. The enzyme has highest activity with maltotriose as substrate. As initial substrate degree of polymerization is increased to maltoheptaose, D-enzyme activity drops to zero at 10 millimolar substrate concentrations and by 70% at 1 millimolar concentrations. The enzyme cannot use maltose as a substrate. Glucose was found to be a suitable acceptor substrate for this D-enzyme. Addition of glucose to incubation mixtures, or production of glucose by D-enzyme, prevents the synthesis of maltodextrins larger than maltopentaose. Removal of glucose produced by D-enzyme activity with maltotriose as substrate resulted in the synthesis of maltopentaose and maltodextrins with sufficient degrees of polymerization to be suitable substrates for pea chloroplast starch phosphorylase. The possible role of D-enzyme in pea chloroplast starch metabolism is discussed.  相似文献   

6.
The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer''s worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer''s yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. α-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer''s ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous α-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24° Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.The main fermentable sugars in brewer''s wort are maltose (ca. 60% of the total), maltotriose (ca. 25%), and glucose (ca. 15%). In traditional brewery fermentations, worts of about 11° Plato (°P) are used, corresponding to a total fermentable sugar concentration of about 80 g · liter−1. Many modern breweries ferment high-gravity worts (15 to 17°P), and there are efforts to raise the concentration to 25°P, corresponding to a total sugar concentration of about 200 g · liter−1. Industrial use of such very-high-gravity (VHG) worts is attractive because it offers increased production capacity from the same-size brew house and fermentation facilities, decreased energy consumption, and decreased labor, cleaning, and effluent costs (34, 35).Whereas glucose, which is used first, is transported into yeast cells by facilitated diffusion, the α-glucosides maltose and maltotriose are carried by proton symporters (2, 26, 39). Maltose transport seems to have a high level of control over the fermentation rate. Thus, during the early and middle stages of fermentation of brewer''s wort by a lager yeast, the specific rate of maltose consumption was the same as the specific zero-trans maltose uptake rate measured off line with each day''s yeast in each day''s wort spiked with [14C]maltose (27). Furthermore, introducing a constitutive MAL61 (maltose transporter) gene into a brewer''s yeast on a multicopy plasmid accelerated the fermentation of high-gravity worts (17). Maltotriose is the last sugar to be used in brewing fermentations, and significant amounts of residual maltotriose sometimes remain in beer, causing economic losses (lower yield of ethanol on wort carbohydrate) and possibly undesirable organoleptic effects. The problem of residual sugars in beer is more serious when high-gravity and VHG worts are used. Some, but not all, maltose transporters can also carry maltotriose. The MALx1 genes (x = 1 to 4 and 6) encode transporters that carry maltose efficiently but are generally believed to have little or no activity toward maltotriose (1, 3, 13, 30), although substantial activity toward maltotriose was reported by Day et al. (4). Some yeast strains contain a gene 57% identical to MAL11 that is usually known as AGT1 but is recorded in the Saccharomyces Genome Database (SGDB) as MAL11. The Agt1 transporter has relatively high activity toward maltotriose, as well as maltose (13), and similar Km values (4 to 5 mM) for these two substrates (4). Alves et al. (1) found that the specific deletion of AGT1 from several Saccharomyces cerevisiae strains also containing at least one MALx1 gene (MAL21, MAL31, and/or MAL41) abolished their ability to transport maltotriose but did not decrease their maltose transport activity. These results supported the belief that the Mal21, Mal31, and Mal41 transporters cannot carry maltotriose, though it remains possible that there are differences between Malx1 transporters from different strains. The same group has also shown (33) that overexpression of AGT1 on a multicopy plasmid in an industrial yeast strain with a very limited ability to ferment maltotriose provided the strain with increased maltotriose uptake activity and the ability to ferment maltotriose efficiently. In 2005, a novel kind of α-glucoside transporter was independently found by two groups (6, 30) in some industrial strains of brewer''s, baker''s, and distiller''s yeasts. These transporters are coded by MTT1 (also called MTY1) genes, which are 90 and 54% identical to the MAL31 and AGT1 genes, respectively. The Mtt1 transporters have high activity toward maltotriose and are the only known α-glucoside transporters with lower Km values for maltotriose than for maltose (30).Before the discovery of the MTT1 genes, Vidgren et al. (36) sequenced AGT1 genes from two apparently unrelated lager strains and two apparently unrelated ale strains of brewer''s yeast. Surprisingly, at that time (because other maltotriose transporters were not known), the AGT1 genes from the lager strains contained an insertion of one nucleotide, resulting in a premature stop codon, and encoded a truncated, nonfunctional 394-amino-acid polypeptide, whereas those from the ale strains encoded full-length 616-amino-acid transporters. This premature stop codon was later shown (37) to be present in AGT1 genes from all eight of the lager strains tested but was not in any of the four ale strains tested, whereas MTT1 genes were present in all of the lager strains tested but in none of the ale strains tested.In the present work, we have tested whether lager fermentations can be accelerated and residual maltotriose levels decreased by repairing the defective AGT1 genes of lager strains with appropriate DNA sequences from ale strains. Furthermore, the MALx1 and AGT1 genes are repressed by glucose and induced by α-glucosides (9, 16, 19, 25), so that replacing the native AGT1 promoter with a constitutive S. cerevisiae promoter might also increase α-glucoside transport activity and accelerate wort fermentations. The objectives of the present work were to confirm that α-glucoside transport has a high level of control over the rate and extent of wort fermentation and to create a genetically modified lager yeast strain that has improved fermentation performance but contains only Saccharomyces DNA.  相似文献   

7.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the α-glucoside transporters described so far.  相似文献   

8.
Improved fermentation of starch and its dextrin products would benefit the brewing and whiskey industries. Most strains ofSaccharomyces ferment glucose and maltose and partially ferment maltotriose, but are unable to utilise the larger dextrin products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to transport the aforementioned mono-, di- and trisaccharides into the cytosol. The maltotriose transporting efficiency varies between differentSaccharomyces strains. In this study, severalSaccharomyces strains, including whiskey strains, were screened for growth on maltotriose. TheAGT1 genes, which encode a maltose transporter that show affinity for maltotriose uptake, were isolated from the strains that grew strongest in media with maltotriose as sole carbon source. The isolatedAGT1 alleles were sequenced and their chromosomal locations determined in the strains from which they were cloned. Nucleotide and deduced amino acid sequences of the isolated genes shared 95% and 98% identity, respectively. The efficiency of maltotriose transport was determined by expressing theAGT1 variants in an identical genetic background. TheK m values obtained for all the permeases were very similar (≈3), but the permease with improved performance for maltotriose transport showed an approximately 30% higherV max value than for the others. The data obtained suggest that the genetic variation among theAGT1-encoded transporters is reason for the variation in maltotriose transport efficiency among differentSaccharomyces strains. This study offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whiskey industries.  相似文献   

9.
Novel glycosides of piceid (3,4′-5-trihydroxy stilbene 3-O-β-d-glucoside) were produced by the transglycosylation reactions of cyclodextrin glucanotransferase (CGTase) from Bacillus macerans, with piceid (PicG1) and maltodextrin as the acceptor and donor substrates, respectively. The reactions were performed at 40 °C with 2.56 mM piceid (0.1% w/v) and maltodextrin (5% w/v) in 0.02 M citrate phosphate buffer, pH 6.0 containing 5% (v/v) methanol for 6 h. Glucose, maltose, sucrose, maltotriose and α-cyclodextrin (α-CD) were also used to analyze their ability to function as donor substrates, for the glycosylation of piceid. Among the different donor substrates used, the maximum transfer efficiency (TE) of glycosylation of piceid was observed for α-cyclodextrin (78.9%) followed by maltodextrin (72.1%). The partially purified piceid glycoside products (PicG2 and PicG3) were identified by mass spectrometry.  相似文献   

10.
A transglucosylase of Streptococcus bovis   总被引:1,自引:0,他引:1       下载免费PDF全文
1. A transglucosylase has been separated from the α-amylase of Streptococcus bovis by chromatography of the cell extract on DEAE-cellulose. 2. The transglucosylase can synthesize higher maltodextrins from maltotriose, but maltose, isomaltose and panose do not function as donors. 3. Iodine-staining polysaccharide may be synthesized from maltotriose provided that glucose is removed. Synthesis from maltohexaose results in dextrins of sufficient chain length to stain with iodine, but again maltodextrins of longer chain length are formed when glucose is removed from the system. 4. The transglucosylase degrades amylose in the presence of a suitable acceptor, transferring one or more glucosyl residues from the non-reducing end of the donor to the non-reducing end of the acceptor. With [14C]glucose as acceptor the maltodextrins produced were labelled in the reducing glucose unit only. 5. The acceptor activities of 25 sugars have been compared with that of glucose. Maltose has 50%, methyl α-glucoside has 15%, isomaltose and panose each has 8% and sucrose has 6% of the accepting efficiency of glucose. Mannose and sorbose also had detectable activity. With the exception of maltose all these sugars produced a different series of dextrins from that obtained with glucose. 6. It was concluded that S. bovis transglucosylase transfers α-(1→4)-glucosidic linkages in the same manner as D-enzyme, but some differences in specificity distinguish the two enzymes. Unlike D-enzyme, S. bovis transglucosylase can transfer glucosyl units, producing appreciable amounts of maltose both during synthesis from maltotriose and during transfer from amylose to glucose. 7. No evidence was found that the transglucosylase was extracellular. The enzyme is cell-bound, and is released by treatment of the cells with lysozyme and by suspension of the spheroplasts in dilute buffer. 8. The transglucosylase may be responsible for the storage of intracellular iodophilic polysaccharide that occurs when the cells are grown in the presence of suitable carbohydrate sources.  相似文献   

11.
Unimbibed Amaranthus caudatus seeds were found to contain stachyose, raffinose, verbascose, sucrose, galactinol, myo-inositol, glucose and fructose, while no galactose, maltose and maltotriose was detected. During imbibition, seed concentrations of verbascose, stachyose, raffinose, galactinol, myo-inositol (temporary) and fructose (transient) were observed to decrease; concentrations of galactose and maltose remained fairly constant, while those of sucrose, glucose and maltotriose increased, the increase in sucrose concentration was only temporary. Effects of gibberellin A3 (GA3) at 3 × 10−4 M and ethephon at 3 × 10−4 M alone or in the presence of methyl jasmonate (Me-JA) at 10−3 M on concentrations of soluble sugars during germination of A. caudatus seeds were examined. Me-JA was found to inhibit seed germination and fresh weight of the seeds, but did not affect sucrose, myo-inositol, galactose and maltose concentrations during imbibition for up to 20 h. The exogenously applied GA3 was observed to enhance germination, stachyose breakdown and glucose concentration after 20 h of incubation. Ethephon stimulated seed germination as well as utilisation of stachyose, galactinol (both after 14 and 20 h) and raffinose (after 14 h of incubation). Although the stimulatory effect of either GA3 or ethephon on seed germination was blocked by Me-JA; these stimulators increased mobilisation of raffinose and stachyose, but only ethephon enhanced both glucose and fructose after 14 and/or 20 h of incubation in the presence of Me-JA. The maltose concentration was increased by both GA3 and ethephon alone and in the presence of Me-JA. Of the growth regulators studied, ethephon alone and/or in combination with Me-JA significantly increased the concentrations of glucose, fructose, galactose, maltose and maltotriose. The differences in sugar metabolism appear to be linked to ethylene or GA3 applied simultaneously with Me-JA.  相似文献   

12.
Cyclodextrin glycosyltransferase (CGTase) activity was monitored inBacillus macerans culture fluids up to 56 h incubation time using glucose (G1), maltose (G2), maltotriose (G3), maltoheptaose (G7), α-,β-,γ-cyclodextrins (CDs) and soluble starch as carbon sources. Highest maximum specific growth rates (μmax) were observed with glucose, γ-CD and soluble starch (μmax values were 0.86, 0.74 and 0.69/h, respectively) while the maximum viable cell numbers were always within the range of 2.3–7.1×1011 CFU/mL independently of the carbon source used. Highest CGTase production was found in the presence of soluble starch and G7 (55.0 and 35.4 nkat/mL, respectively), these saccharides being easily transformed to CDs by CGTase. Moreover, when culture media were supplemented with cyclic malto-oligosaccharides the CGTase activities were about twice higher (19.6–20.6 nkat/mL) than those obtained with the linear G2 and G3 saccharides (8.9 and 11.3 nkat/mL, respectively) which give rise only to negligible quantities of CDs. CDs, which are the major end products of the action of CGTase, are regarded thus as the likely physiological inducers of the enzyme.  相似文献   

13.
《Plant science》1987,48(2):113-121
Cultures of alfalfa (Medicago sativa L. clone RA-3) were screened for their response to a wide variety of carbohydrate sources in the presence or absence of sucrose. Maltose, maltotriose, and soluble starch all act to improve the morphology and eventual conversion to plantlets of somatic embryos. Glucose, sucrose, and other carbohydrates do not have a similar effect. Additional studies were carried out with maltose since this carbohydrate also gives the highest embryo yield. The concentration optimum for maltose is about 4% (w/v). Maltose acts independently of sucrose and in a way which suggests that it serves as a nutritional, rather than as an osmotic, effector of embryogenesis. The effect of maltose on embryogenesis is dependent on the presence of NH4+ whose optimum is approximately 15 mM. Embryogenesis on maltose will not occur in the absence of NH4+. A highly effective regeneration medium can be achieved by including NH4+ and amino acids, especially proline, in a maltose-containing regeneration medium. Maltose is also useful in increasing embryo formation in genotypes which show low regeneration.  相似文献   

14.
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known α-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (Km, 36 ± 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.  相似文献   

15.
The action pattern of Bacillus licheniformis thermostable α-amylase (BLA) was analyzed using a series of 14C-labeled and non-labeled maltooligosaccharides from maltose (G2) to maltododecaose (G12). Maltononaose (G9) was the preferred substrate, and yielded the smallest Km = 0.36 mM, the highest kcat = 12.86 s−1, and a kcat/Km value of 35.72 s−1 mM−1, producing maltotriose (G3) and maltohexaose (G6) as the major product pair. Maltooctaose (G8) was hydrolyzed into two pairs of products: G3 and maltopentaose (G5), and G2 and G6 with cleavage frequencies of 0.45 and 0.30, respectively. Therefore, we propose a model with nine subsites: six in the terminal non-reducing end-binding site and three at the reducing end-binding site in the binding region of BLA.  相似文献   

16.
The action of thermostable α-amylase produced by Bacillus licheniformis 44MB82 strain on soluble and insoluble starch, amylose and amylopectin at temperatures 30°C and 90°C was studied. The hydrolysis of soluble starch proceeded rapidly for 10 to 15 minutes after which the maltodextrins thus formed were further dissociated. In the course of 60-minutes enzyme treatment mainly glucose, maltose and maltosugars (from G3 to G6) as low molecular weight products were found and the formation of maltcse and maltotriose was increased by the longer treatment. The hydrolysis of insoluble starch and amylopectin proceeded in the same way while the amylose was hydrolysed slowly.  相似文献   

17.
Saccharomyces cerevisiae grew slower but reached higher cellular densities when grown on 20 g maltotriose l–1 than on the same concentration of glucose or maltose. Antimycin A (3 mg l–1) prevented growth on maltotriose, but not on glucose or maltose, indicating that it is not fermented but is degraded aerobically. This was confirmed by the absence of ethanol and glycerol production. Active uptake of maltotriose across the plasma membrane is the limiting step for metabolism, and the low rate of maltotriose transport observed in maltotriose-grown cells is probably one of the main reasons for the absence of maltotriose fermentation by S. cerevisiae cells.  相似文献   

18.
The -amylase of Thermomonospora curvata catalyses the formation of very high levels of maltose from starch (73%, w/w) without the attendant production of glucose. The enzyme was produced extracellularly in high yield during batch fermentation in a 5-1 fermentor. Purification was achieved by ammonium sulphate fractionation, Superose-12 gel filtration and DEAE-Sephacel ionexchange chromatography. The enzyme exhibited maxima for activity at pH 6.0 and 65°C, had a relative molecular mass of 60900–62000 and an isoelecric point at 6.2. The exceptionally high levels of maltose produced and the unique action pattern exhibited on starch and related substrates indicate a very unusual maltogenic system. The predominance of maltose as the final end-product may be explained by the participation of reactions other than simple hydrolysis and the preferential cleavage of maltotriose from higher maltooligosaccharides. The enzyme exhibits very low affinity for maltotriose (K m=7.7 × 10–3 m) and its conversion to maltose is achieved by synthetic followed by hydrolytic events, which result in the very high levels of maltose observed and preclude glucose formation. This system is distinguished from other very high maltose-producing amylases by virtue of its high temperature maximum, very low affinity for maltotriose and the absence of glucose in the final saccharide mixture. Correspondence to: C. T. Kelly  相似文献   

19.
Aims:  The main objective of this study was to identify amino acid residues in the AGT1‐encoded α‐glucoside transporter (Agt1p) that are critical for efficient transport of maltotriose in the yeast Saccharomyces cerevisiae. Methods and Results:  The sequences of two AGT1‐encoded α‐glucoside transporters with different efficiencies of maltotriose transport in two Saccharomyces strains (WH310 and WH314) were compared. The sequence variations and discrepancies between these two proteins (Agt1pWH310 and Agt1pWH314) were investigated for potential effects on the functionality and maltotriose transport efficiency of these two AGT1‐encoded α‐glucoside transporters. A 23‐amino‐acid C‐terminal truncation proved not to be critical for maltotriose affinity. The identification of three amino acid differences, which potentially could have been instrumental in the transportation of maltotriose, were further investigated. Single mutations were created to restore the point mutations I505T, V549A and T557S one by one. The single site mutant V549A showed a decrease in maltotriose transport ability, and the I505T and T557S mutants showed complete reduction in maltotriose transport. Conclusions:  The amino acids Thr505 and Ser557, which are respectively located in the transmembrane (TM) segment TM11 and on the intracellular segment after TM12 of the AGT1‐encoded α‐glucoside transporters, are critical for efficient transport of maltotriose in S. cerevisiae. Significance and Impact of the Study:  Improved fermentation of starch and its dextrin products, such as maltotriose and maltose, would benefit the brewing and whisky industries. This study could facilitate the development of engineered maltotriose transporters adapted to starch‐efficient fermentation systems, and offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whisky industries.  相似文献   

20.
1. A transglucosylase has been separated from cell extracts of Streptococcus mitis, and has been partially purified by chromatography on DEAE-cellulose. 2. The transglucosylase was present in the six strains of Streptococcus mitis that were examined, and the activity of the enzyme was the same whether the cells had grown on glucose or on maltose. Four of the strains could store intracellular iodophilic polysaccharide when grown on high concentrations of glucose or maltose (1%), but none of the strains stored polysaccharide during growth on 0·1% glucose. The activity of transglucosylase in cell extracts was the same whether or not the cells had stored polysaccharide. 3. The transglucosylase degrades amylose in the presence of a suitable acceptor, transferring one or more glucosyl residues from the non-reducing end of the donor to the non-reducing end of the acceptor. With [14C]glucose as acceptor the maltodextrins produced were labelled in the reducing glucose unit only. 4. The enzyme can synthesize higher maltodextrins from maltose and maltotriose. Maltotetraose is disproportionated to give products of sufficient chain length to give a stain with iodine. 5. The action pattern of S. mitis during the degradation of synthetic amylose was shown to be intermediate between the single-chain and multi-chain mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号