首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of complexes of Co(II), Ni(II) and Cu(II) with L-dopa and 1,10-phenanthroline. The titrations were performed in the presence of different relative concentrations (M:L:X = 1.0:2.5:2.5; 1.0:2.5:5.0; 1.0:5.0:2.5) of metal (M) to L-dopa (L) and 1,10-phenanthroline (X) with sodium hydroxide in varying concentrations (0-60% v/v) of 1,2-propanediol-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303.0 K. Stability constants of the ternary complexes were refined using MINIQUAD75. The species MLXH, MLX, ML2X and MLX2H for Co(II) and Cu(II) and MLXH, MLX and MLX2H for Ni(II) were detected. The extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of 1, 2-propanediol-water mixtures and plausible equilibria for the formation of species were also presented. The bioavailability of the metal ions is explained based on the speciation.  相似文献   

2.
Abstract

Chemical speciation of ternary complexes of Ca(II), Mg(II) and Zn(II) ions with L-histidine as the primary ligand (L) and L-glutamic acid as the secondary ligand (X) has been studied pH metrically in the concentration range of 0.0-60.0% v/v DMSO-water mixtures maintaining an ionic strength of 0.16 mol L-1 using sodium chloride at 303.0 K. Titrations were carried out in different relative concentrations (M:L:X = 1.0:2.5:2.5, 1.0:2.5:5.0, 1.0:5.0:2.5) of metal (M) to L-histidine to L-glutamic acid with sodium hydroxide. Stability constants of ternary complexes were refined with MINIQUAD75. The best-fit chemical models were selected based on statistical parameters and residual analysis. The predominant species detected for Ca(II), Mg(II) and Zn(II) are ML2XH2, MLXH2 and MLX2. Extra stability of ternary complexes compared to their binary complexes was explained to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of DMSO and the plausible equilibria for the formation of species are discussed.  相似文献   

3.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of l-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m = 0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral l-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of l-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to l-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from ?130 to ?1,300 kJ/mol), and upon hydration are appreciably lowered.  相似文献   

4.
5.
3-Hydroxy-4-pyridinones (3,4-HP) are well known iron-chelators with applications in medicinal chemistry, mainly associated with their high affinity towards trivalent hard metal ions (e.g. M3+, M = Fe, Al, Ga) and use as decorporating agents in situations of metal accumulation. The polydenticity and the extra-functionality of 3,4-HP derivatives have been explored, aimed at improving the chelating efficacy and the selectivity of the interaction with specific biological receptors. However, the ideal conjugation of both features in one molecular unity usually leads to high molecular weight compounds which can have crossing-membrane limitations.Herein, a different approach is used combining a arylpiperazine-containing bis-hydroxypyridone (H2L1) with a biomimetic mono-hydroxypyridinone, ornithine-derivative (HL2), to assess the potential coadjuvating effect that could result from the administration of both compounds for the decorporation of hard metal ions. This work reports the results of solution and in vivo studies on their chelating efficacy either as a simple binary or a ternary system (H2L1:HL2:M3+), using potentiometric and spectrophotometric methods. The solution complexation studies with Fe(III) indicate that the solubility of the complexes is considerably increased in the ternary system, an important feature for the metal complex excretion, upon the metal sequestration. The results of the in vivo studies with 67Ga-injected mice show differences on the biodistribution profiles of the radiotracer, upon the administration of each chelating agent, that are mainly ascribed to the differences of their extra-functional groups and lipo/hydrophilic character. However, administration of both chelating agents leads to a more steady metal mobilization, which may be attributed to an improved access to different cellular compartments.  相似文献   

6.
Binary and ternary systems involving adenosine 5′-triphosphate (ATP), 2,2′-dipyridylamine (DPA) and magnesium, calcium, strontium, manganese, cobalt, copper, and zinc(II) metal ions have been investigated in aqueous media by potentiometric titrations. The analysis of the titration curves shows the existence of M(ATP)2−, M(ATP)(H), and M(ATP)2(H)24− species for alkaline-earth metal ions, while no ternary complex can be detected. For transition metal ions both binary and ternary species are found. Binary M(ATP)2(H)24− complexes are present in solutions containing manganese and cobalt(II) metal ions but these species cannot be revealed in the case of copper and zinc(II). Ternary complexes as M(ATP)(DPA)2− and M(ATP)(DPA)(H) are common to all transition metals. Binuclear and hydroxo complexes as M2(ATP)(OH) and M(ATP)(OH)3− are found only for copper and zinc(II). A hypothesis on the possible role of the species M-ATP in 1:2 ratio in the dephosphorylation mechanism is advanced on the basis of a comparison between the equilibrium data in the solution phase and the solid state structures of the magnesium, calcium, and manganese(II)- ATP-DPA systems.  相似文献   

7.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

8.
The stability constants of the binary and the ternary complexes of Pu4+ have been measured for certain carboxylate and aminocarboxylate ligands in aqueous solution of I = 5.0 M (1 M perchloric acid + 4 M ionic strength perchlorate media) and temperatures of 0-45 °C by the solvent extraction technique. The stability constants of the binary and the ternary complexes increased with increased temperature. The complexation enthalpy and entropy of the binary Pu-Ox and the ternary Pu-EDTA-Ox and DGA complexes indicated the stability of these complexes is due to the highly favorable entropy contribution while complexation enthalpies either oppose complexation or are weakly favorable.  相似文献   

9.
《Inorganica chimica acta》1986,124(4):175-179
The zinc ion coordination of vincristine was studied by polarography; the analogous calcium ion coordination process was studied potentiometrically by a calcium ion selective electrode. In both cases, complexes of 1:1 composition were formed. The formation constant of the calcium complex was found to be 1g K = 3.27 ± 0.1. On the basis of the substitution of zinc in its vincristine complex by calcium and magnesium ions respectively, the ratio of the corresponding stability constants could be estimated as KZn:KCa (and KZn:KMg) ∼ 105−3 × 104. The complex formation processes proved to be pH-independent in the pH range 3.4–5.5, indicating that the metal ions are coordinated by the unprotonated oxygen donor atoms of vincristine.  相似文献   

10.
Dihydrofolate reductase (EC 1.5.1.3), purified to homogeneity from an amethopterin-resistant subline (R6) of cultured L1210 murine leukemia cells, has been used to study enzyme-substrate and enzyme-inhibitor complexes. NADPH, NADP+acid-modified NADPH (λmax at 265 nm, elevated absorbance at 290 nm), 2′-phosphoadenosine-5′-diphosphate ribose, dihydrofolate, and amethopterin formed binary complexes with the enzyme. Ternary complexes could be formed by admixing the enzyme with: (a) NADPH and amethopterin; (b) NADP+ and tetahydrofolate; and (c) acid-modified NADPH and dihydrofolate. All of these complexes migrated as stable well-defined bands on polyacrylamide gel electrophoresis at pH 8.3. The bands could be visualized by staining both for enzyme activity and for protein. These binary and ternary complexes were also stable to extensive dialysis. Spectra of the dialyzed enzyme complexes indicated that each ligand was present at an equimolar ratio with the enzyme.  相似文献   

11.
The studies reported in this work are aimed to elucidate the ternary inclusion complex formation of gemfibrozil (GFZ), a poorly water-soluble drug, with β-cyclodextrin (β-CD) with the aid of auxiliary substances like different grades of povidone(s) (viz. PVP K-29/32, PVP K-40, Plasdone S-630, and Polyplasdone XL), organic base (viz. triethanolamine), and metal ion (viz. MgCl2·6H2O), by investigating their interactions in solution and solid state. Phase solubility studies were carried out to evaluate the solubilizing power of β-cyclodextrin, in association with various auxiliary substances, to determine the apparent stability constant (K C) and complexation efficiency (CE) of complexes. Improvement in K C values for ternary complexes clearly proves the benefit of the addition of auxiliary substances to promote CE. Of all the approaches used, the use of polymer Plasdone S-630 was found to be the most promising approach in terms of optimum CE and K C. GFZ–β-CD (1:1) binary and ternary systems were prepared by kneading and lyophilization methods. The ternary systems clearly signified superiority over binary systems in terms of CE, solubility, K C, and reduction in the formulation bulk. Optimized ternary system of GFZ–β-CD–Plasdone S-630 prepared by using lyophilization method indicated a significant improvement in intrinsic dissolution rate when compared with ternary kneaded system. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, scanning electron microscopy, and proton nuclear magnetic resonance were carried out to characterize the binary and optimized ternary complex. The results suggested the formation of new solid phases, eliciting strong evidences of ternary inclusion complex formation between GFZ, β-CD, and Plasdone S-630, particularly for lyophilized products.  相似文献   

12.
Stability constants for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-18-crown-6 (DB18C6) and dibenzo-24-crown-8 (DB24C8) have been determined by conductometry at 25 °C in a poorly solvating solvent, nitromethane. For both the crown ethers, the stability constant decreases with increasing metal ion size, Na+ > K+ > Rb+ > Cs+, regardless of the size compatibility between the metal ions and the ligand cavities. A comparison of the results with those in several other solvents (S: acetonitrile, propylene carbonate, water, methanol, and N,N-dimethylformamide) leads to the conclusion that the selectivity sequence of these crown ethers in nitromethane agrees with the intrinsic one in the absence of a solvent. Transfer activity coefficients of the crown ethers and their complexes from nitromethane to S have been determined to evaluate the solute-solvent interactions. It is shown that DB24C8 shields the alkali metal ions more effectively from the solvents than DB18C6 because of the larger number of oxygen atoms and the more flexible structure of DB24C8. Regarding the complexation in nitromethane as a reference, the complex stability and selectivity in S are discussed. The selectivities of these crown ethers in water, methanol, and N,N-dimethylformamide, which apparently obey the size-fit concept, are largely due to the solvation of the free alkali metal ions.  相似文献   

13.
Aptamers are single stranded nucleic acids with specific target-binding functionalities, biophysical and biochemical properties. The binding performance of aptamers to their cognate targets is influenced by the physicochemical conditions of the binding system particularly in relation to biomolecular charge distribution and hydrodynamic conformations in solution. Herein, we report the use of zeta potential measurements to characterise the surface charge distribution, biomolecular hydrodynamic size and the binding performance of a 15-mer thrombin binding aptamer (TBA) to thrombin under various physicochemical conditions of pH, temperature, monovalent (K+) and divalent (Mg2+) cation concentrations. Charge distribution analysis demonstrated time dependence in the formation of stable TBA-thrombin and TBA-thrombin-metal ion complexes. TBA was characterised to be most stable in pH above 9. The presence of monovalent and divalent metal ions reduced the electronegativity of TBA through electrostatic interactions, and this demonstrated to improve binding characteristics. TBA-thrombin complexes generated under different physicochemical conditions showed varying surface charge distributions. The stability of TBA-thrombin complex investigated using Scatchard analysis showed that the presence of K+ increased the binding performance by displaying a positive cooperativity relationship. The presence of Mg2+ showed a concave upward trend, potentially caused by heterogeneity in binding.  相似文献   

14.
Abstract

The affinity of the lectin Concanavalin A (Con A) for saccharides, and its requirement for metal ions such as Mn2+ and Ca2+, have been known for about 50 years. However the relationship between metal ion binding and the saccharide binding activity of Con A has only recently been examined in detail. Brown et al. (Biochemistry 16, 3883 (1977)) showed that Con A exists as a mixture of two conformational states: a “locked” form and an “unlocked” form. The unlocked form of the protein weakly binds metal ions and saccharide, and is the predominate conformation of demetallized Con A (apo-Con A) at equilibrium. The locked form binds two metal ions per monomer with the resulting complex(es) possessing full saccharide binding activity. Brown and coworkers measured the kinetics of the transition of the unlocked form to the fully metallized locked conformation containing Mn2+and Ca2+. They also demonstrated that Mn2+ alone could form a locked ternary complex with Con A, and that rapid removal of the ions resulted in a metastable form of apo-Con A in the locked conformation which slowly (hours at 25°C) reverted back to (predominantly) the unlocked conformation. The ability to form either conformation in the absence or presence of metal ions has thus allowed us to explore the relationship between metal ion binding and conformational transitions in Con A as determinants of the saccharide binding activity of the lectin.

Based on the kinetics of the transition of unlocked apo-Con A to fully metallized locked Con A, and X-ray crystallographic data, it appears that the transition between the two conformations of Con A involves a cis-trans isomerization of an Ala-Asp peptide bond in the backbone of the protein, near one of the two metal ion binding sites. The relatively large activation energy for the transition (~ 22 kcal M?1) results in relatively slow interconversions between the conformations (from minutes to days), whereas the equilibria with metal ions and saccharide are rapid. Thus, many metastable complexes can be formed and a variety of transition pathways between the two conformations studied.

We have identified and characterized binary, ternary, and quaternary complexes of both conformations of Con A containing Mn2+ and saccharide, and have determined both metalion and saccharide dissociation constants for all of them, as well as equilibrium and kinetic values for the conformational transitions between them. The main finding is that saccharide binds very weakly (Kd~2 M) to unlocked apo-Con A and very tightly to the locked ternary Mn2+-Con A complex (Kd~ 10?4 M). Saccharide binding increases along the various pathways connecting these two species in a nonadditive fashion. Thus, both conformation and metal ion binding determine the saccharide affinity of each complex, although the specificity of saccharide binding of the various species is maintained throughout.  相似文献   

15.
By spectrophotometry and 1H nmr, several of the stability constants of the thioether complexes between Mg2+, Ca2+, Mn2+, Cu2+, Zn2+, Cd2+, or Ag+ and d-biotin (Bio), tetrahydrothiophene (Tht), and dimethyl sulfide (Dms) have been measured in 50% aqueous ethanol, 96% N,N-dimethylformamide (DMF), 98% d6-dimethyl sulfoxide, or in D2O. With decreasing concentration of water, the thioether interaction increases with the biologically important metal ions, whereas, e.g., Ag+ behaves in the opposite way. The stability of these complexes is, in general, quite small: for example, with d-biotin in 96% DMF (I = 1.0; 25°C) log KM(Bio)M = 0.03 and 1.64 for Cu2+ and Ag+, respectively; in D2O (I = 0.5 for Ag+, all others 2–5; 27°C) log KM(Bio)M ? ?1.0, ?1.4, ?1.2, ?0.9, or 4.20 for Mg2+, Ca2+, Zn2+, Cd2+, or Ag+. In those cases where the difference log KM(Tht)M ? log KM(Bio)M can be calculated, it is in the order of 0.3 log units; this observation, as well as the chemical shifts measured, confirm the earlier suggestion that the interaction at the sulfur of biotin is stereoselective: the metal ion coordinates from “below” the tetrahydrothiophene ring of biotin to the sulfur atom, i.e., trans to the urea ring. It is emphasized that despite the low stability of these complexes with the biologically meaningful metal ions, the extent of the interaction is enough to create specific structures.  相似文献   

16.
The binary complexes of 5-amino-3,5-dideoxy-D-glycero-D-galactononulosic acid (NANA), commonly called N-acetyl neuraminic acid, formed with biological metal ions such as Co(II) and Cu(II) and toxic metal ions such as Cd(II) and Pb(II) were investigated in aqueous solution by means of potentiometry, UV and NMR spectroscopy. The corresponding ternary systems with 2,2'-bipyridine were studied in aqueous solution by potentiometry and UV spectroscopy. NANA co-ordinates all metal ions, in both binary and ternary systems through the carboxylic group (protonated or deprotonated according to pH), pyranosidic ring oxygen and glycerol chain alcoholic hydroxy groups. The prevailing species in the pH range 2-7 are of [M(NANA)(2)] type, and their stability constants are greater than those of simple carboxylate complexes. Above pH 7, the species [M(NANA)(2)OH](-) are also formed, but they do not prevent the precipitation of metal hydroxides. This work provides information on the solution state chemistry of NANA in the presence of bivalent metal ions; its great affinity for the toxic metals Cd(II) and Pb(II), near physiological conditions, and the relatively high stability of the complex species found may also account for the mechanism of toxicity.  相似文献   

17.
Complexation equilibria between Al(III) and (−)-epigallocathechin gallate (EGCG) in the presence of acetate buffer have been studied by spectrophotometry. The method is based on the competition between EGCG and buffer ligands for Al(III) ions. The apparent formation constant of the EGCG complex for Al(III), which could be determined by measuring the absorbance of the free EGCG, decreased with increasing acetate ion concentration at a fixed pH. This phenomenon has been quantitatively investigated and both types of complexes (EGCG and acetate) could be analyzed. The apparent formation constant of Al(III) complex with EGCG also decreased with decreasing pH at a fixed acetate ion concentration. The pH dependence of the apparent formation constant indicates the 1:1 competition between metal ions and hydrogen ions for the binding site of EGCG. The intrinsic formation constant of Al-EGCG complex, the proton association constant of EGCG and the formation constant of Al-acetate complex are found to be log KAl-EGCG = 7.6 ± 0.1, log KH-EGCG = 7.65 ± 0.03 and log KAl-acetate = 2.07 ± 0.05 by a graphical analysis.  相似文献   

18.
The binary complexation of Am3+, Cm3+and Eu3+ with citrate has been studied at I = 6.60 m (NaClO4), pcH 3.60 and in the temperatures range of 0-60 °C employing a solvent extraction technique with di-(2-ethylhexyl)phosphoric acid/heptane. Two complexes, MCit and , were formed at all temperatures. For the three metal ions, the log β101 was between 5.9 and 6.2 and log β102 between 10.2 and 10.6 at 25 °C. The thermodynamic parameters for the Am-Cit system have been calculated from the temperature dependence of the β101 and β102 values. Positive enthalpy and entropy values for the formation of both complexes are interpreted as due to the contributions from the dehydration of the metal ions exceeding the exothermic cation-anion pairing. The formation of the ternary complex M(EDTA)(Cit)4− (M = Cm and Eu) was measured to have large stability constants (log β111 between 20.9 and 24.4) at 25 and 60 °C. Time resolved laser luminescence spectroscopy and lifetime measurement data validated the nature of the complexes of Eu(III) formed in the presence of Cit and EDTA + Cit in 6.60 m (NaClO4) solution.  相似文献   

19.
Calcium-binding stoichiometry, dissociation equilibrium constants at zero ionic strength (K0), and molar extinction difference coefficients (Δ?λ) at the wavelength λ of the metallochromic indicators arsenazo I (ArsI) and tetramethylmurexide (TMX) were reevaluated with a computerized method based on mass conservation and thermodynamic consistency checks. This new method is shown to provide a more critical assessment of the assumed calcium-dye complexing model than is afforded by the commonly used reciprocal-plot method. The analyses of spectrophotometric Ca titrations confirm that both dyes form only 1:1 complexes in aqueous solution. For TMX, K0 = 1.3 × 10?3m and Δ?480 = 1.5 × 104m?1 cm?1; for ArsI, K0 = 5.8 × 10?3m and Δ?562 = 1.8 × 104m?1 cm?1 at pH 7.0 and T = 293°K. The discriminatory power of the analytical method is demonstrated by comparison of these results with those found for a different dye, arsenazo III, which complexes Ca in 1:1, 1:2, and 2:1 forms.  相似文献   

20.
Rate parameters have been obtained for the oxidation of cuprous stellacyanin by cobalt(III) ions of the form cis(N)-[CoN2O4]?, including cis(N)-[Co(NTA)(gly)]?, cis(N)-[Co(IDA)2]?, [Co(en)(ox)2]?(μ 0.5 M(phosphate), pH 7.0), and Co(EDTA)?(μ 0.1 M(NaCl), pH 7.2, 0.001 M phosphate). An excellent isokinetic correlation between the activation parameters ΔH and ΔS exists for the reactions of aminopolycarboxylatocobalt(III) ions with reduced stellacyanin (β = 300 ± 12 K; correlation coefficient = 0.995). It is concluded that enthalpy-entropy compensation in these reactions may be understood in terms of differing orientations preferred by the various oxidants in forming precursor complexes with the reduced blue protein. While ΔH and ΔS values for electron transfer from stellacyanin to cis(N)-[CoN2O4]? ions vary over ranges of 10.7 kcal/mol and 34 cal/mol-deg, respectively, room temperature rate constants are relatively constant (3.6–34.5 M?1 sec?1), as expected from Marcus theory for outer sphere electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号