首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chirality》2017,29(6):273-281
Enantiomeric 1H and 13C NMR signal separation behaviors of various α‐amino acids and DL‐tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S ,S )‐ethylenediamine‐N ,N' ‐disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β‐protons for fully bound D‐ and L‐alanine (δb(D) and δb(L)) and their adduct formation constants (K s) were obtained for both metal complexes. Preference for D‐alanine was similarly observed for both complexes, while it was revealed that the difference between the δb(D) and δb(L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb(D) and δb(L) values with greater signal broadening compared to the samarium(III) complex.  相似文献   

2.
New solid complex compounds of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin were synthesized. The molecular formula of the complexes is Ln(C15H9O7)3 · nH2O, where Ln is the cation of lanthanide and n = 6 for La(III), Sm(III), Gd(III) or n = 8 for Ce(III), Pr(III), Nd(III) and Eu(III). Thermogravimetric studies and the values of dehydration enthalpy indicate that water occurring in the compounds is not present in the inner coordination sphere of the complex. The structure of the complexes was determined on the basis of UV-visible, IR, MS, 1H NMR and 13C NMR analyses. It was found that in binding the lanthanide ions the following groups of morin take part: 3OH and 4CO in the case of complexes of La, Pr, Nd, Sm and Eu, or 5OH and 4CO in the case of complexes of Ce and Gd. The complexes are five- and six-membered chelate compounds.  相似文献   

3.
《Inorganica chimica acta》1986,117(2):187-189
The isolation and characterization of nine polymeric complexes of the general formula [M(L)1.5S2]n (where M is the metal ion, L the ligand and S the solvent, C2H5OH) of La(III) and Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III) with.the biologically active compound embelin using elemental and thermal analysis, infrared and electronic spectral studies is reported.  相似文献   

4.
Oxidations of three porphyrin-iron(III) complexes (1) with ferric perchlorate, Fe(ClO4)3, in acetonitrile solutions at −40 °C gave metastable porphyrin-iron(IV) diperchlorate complexes (2) that isomerized to known iron(III) diperchlorate porphyrin radical cations (3) when the solutions were warmed to room temperature. The 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetramesitylporphyrin (TMP), and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) systems were studied by UV-visible spectroscopy. Low temperature NMR spectroscopy and effective magnetic moment measurements were possible with the TPP and TMP iron(IV) complexes. Reactions of two corrole systems, 5,10,15-tris(pentafluorophenyl)corrole (TPFC) and 5,15-bis(pentafluorophenyl)-10-p-methoxyphenylcorrole (BPFMC), also were studied. The corrole-iron(IV) chlorides reacted with silver salts to give corrole-iron(IV) complexes. The corrole-iron(IV) nitrate complexes were stable at room temperature. (TPFC)-iron(IV) toslyate, (TPFC)-iron(IV) chlorate, and (BPFMC)-iron(IV) chlorate were metastable and rearranged to their electronic isomers iron(III) corrole radical cations at room temperature. (TPFC)-iron(III) perchlorate corrole radical cation was the only product observed from reaction of the corrole-iron(IV) chloride with silver perchlorate. For the metastable iron(IV) species, the rates of isomerizations to the iron(III) macrocycle radical cation electronic isomers in dilute acetonitrile solutions were relatively insensitive to electron demands of the macrocyclic ligand but reflected the binding strength of the ligand to iron. Kinetic studies at varying temperatures and concentrations indicated that the mechanisms of the isomerization reactions are complex, involving mixed order reactivity.  相似文献   

5.
The function of Mn(III) in plant acid phosphatase has been investigated by a metal-substitution study, and some properties of the Fe(III)-substituted enzyme were compared with those of the native Mn(III) enzyme and mammalian Fe(III)-containing acid phosphatases. 19F nuclear magnetic resonance (NMR) and proton relaxation rate measurements showed that inhibitors such as F and nitrilotriacetic acid interact with paramagnetic Mn(III) active site. The 31P-NMR signal of the enzyme-phosphate complex was also broadened by the paramagnetic effect of Mn(III). In the metal-substitution experiments of the Mn(III)-acid phosphatase with Fe(III), Zn(II) and Cu(II), only the iron gave satisfactory substitution. The Fe(III)-substituted plant acid phosphatase exhibited an absorption maximum at 525 nm (ε = 3000), typical high spin ferric ESR signal at g = 4.39, and lower pH optimum (pH 4.8) than the native Mn(III)-enzyme (pH 5.8). The phosphatase activity of the Fe(III)-substituted enzyme was reduced to about 53% of that of the native enzyme. The substrate specificities of both metallophosphatases were remarkably similar, but different from that of the Fe(III)-containing uteroferrin. The present results indicate that Mn(III) and Fe(IIII) in the acid phosphatase play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4–6.  相似文献   

6.
The gadolinium(III) chelates Gd(dtpaH2), Gd(hfac)3, Gd(tta)3 and Gd(qu)3 with dtpa=1,1,4,7,7-diethylenetriaminepentaacetate, hfac=hexafluoroacetylacetonate, tta=thenoyltrifluoroacetonate and qu=8-quinolinolate (or oxinate) show a phosphorescence under ambient conditions. While the UV emission of Gd(dtpaH2) at λmax=312 nm comes from a metal-centered ff state, the bluish (λmax=462 nm), green (λmax=505 nm) and red (λmax=650 nm) luminescence of Gd(hfac)3, Gd(tta)3 and Gd(qu)3, respectively, originates from the lowest-energy intraligand triplets.  相似文献   

7.
The kinetics of binding of Cu (II), Tb (III) and Fe(III) to ovotransferrin have been investigated using the stopped-flow technique. Rate constants for the second-order reaction, k +, were determined by monitoring the absorbance change upon formation of the metal-transferrin complex in time range of milliseconds to seconds. The N and C sites appeared to bind a particular metal ion with the same rate; thus, average formation rate constants k + (average) were 2.4 × 104 M–1 s–1 and 8.3 × 104 M–1 S –1 for Cu (II) and Tb (III) respectively. Site preference (N site for Cu (II) and C site for Tb (III)) is then mainly due to the difference in dissociation rate constant for the metals. Fe (III) binding from Fe-nitrilotriacetate complex to apo-ovotransferrin was found to be more rapid, giving an average formation rate constant k + (average) of 5 × 105 M–1 s–1, which was followed by a slow increase in absorbance at 465 nm. This slow process has an apparent rate constant in the range 3 s–1 to 0.5 s–1, depending upon the degree of Fe (III) saturation. The variation in the rate of the second phase is thought to reflect the difference in the rate of a conformational change for monoferric and diferric ovotransferrins. Monoferric ovotransferrin changes its conformation more rapidly (3.4s–1) than diferric ovotransferrin (0.52 s–1). A further absorbance decrease was observed over a period of several minutes; this could be assigned to release of NTA from the complex, as suggested by Honda et al. (1980).Abbreviations Tf ovotransferrin - NTA nitrilotriacetate Jichi Medical School, School of Nursing, Yakushiji 3311-159, Minamikawachi, Tochigi, 329-04 Japan  相似文献   

8.
Doxorubicin has a high affinity for inorganic iron, Fe(III), and has potential to form doxorubicin-Fe(III) complexes in biological systems. Indirect involvement of iron has been substantiated in the oxidative mutagenicity of doxorubicin. In this study, however, direct involvement of Fe(III) was evaluated in mutagenicity studies with the doxorubicin-Fe(III) complex. The Salmonella mutagenicity assay with strain TA102 was used with a pre-incubation step. The highest mutagenicity of doxorubicin-Fe(III) complex was observed at the dose of 2.5 nmol/plate of the complex. The S9-mix decreased this highest mutagenicity but increased the number of revertants at a higher dose of 10 nmol/plate of the complex. On the other hand, the mutagenicity of the doxorubicin-Fe(III) complex at the doses of 0.25, 0.5, 1 and 2 nmol/plate was enhanced about twice by the addition of glutathione plus H2O2. This enhanced mutagenicity as well as of the complex itself, the complex plus glutathione, and the complex plus H2O2 were reduced by the addition of ADR-529, an Fe(III) chelator, and potassium iodide, a hydroxyl radical scavenger. These results indicate that doxorubicin-Fe(III) complex exert the mutagenicity through oxidative DNA damage and that Fe(III) is a required element in the mutagenesis of doxorubicin.  相似文献   

9.
Manganese phthalocyanine-substituted cytochrome c has been prepared by the reaction of Mn(III) tetrasulfonated phthalocyanine with apocytochrome c in acetate buffer, pH 5.8. Its structure and properties have been investigated by difference spectroscopy, circular dichroism (cd), electron paramagnetic resonance (epr), electrophoresis, molecular weight estimation, and potentiometric measurements. The epr and spectroscopic data show that the manganese phthalocyanine-substituted cytochrome c represents the low spin, six-coordinated. Mn(Ill) complex with the metal ion in the plane of the phthalocyanine ring. The sixth ligand, which is coordinated axially to the metal ion, is probably the methionine-80. Electrophoresis and molecular weight studies show this complex to be a monomer. As is shown by cd experiments, Mn(III)L-apocyt has a more ordered structure than that of apocytochrome c. Its conformation is, however, significantly altered compared to native cytochrome c. The manganese(III)-phthalocyanine complex is able to combine with cyanide. The cyanide derivative gives a stable reduced form upon dithionite reduction. If, however, Mn(IlI)Lapocyt is reduced with dithionite before addition of cyanide, it loses its ability to coordinate with cyanide. Nitric oxide reacts with the manganese(III) complex to form, in all probability, the nitrosyl derivative. The half-reduction potential of Mn(IlI)L-apocyt is about +400 mV, and the complex is reduced by cytochrome c. Spectroscopic data suggest that the mechanism of this process is complicated.  相似文献   

10.
In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV–vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200 μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal–HSA interactions; while the binding affinity (Ka) of Au(III)–HSA binding was around 3.87 × 105 M−1, it was around 9.68 × 103 M−1 for Ga(III)–HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions.  相似文献   

11.
The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×105 and (1.1±0.1)×106 M−1 s−1, respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×106 M−1 s−1 at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×107 M−1 s−1 at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly—most probably via reaction at the solvent-accessible heme edge—whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c.  相似文献   

12.
Dichloro(4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane)chromium(III) chloride, Dichloro(4,10-dibenzyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane) chromium(III) chloride, and Dichloro(4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2] hexadecane)chromium)(III) chloride have been prepared by the reaction of anhydrous chromium(III) chloride with the appropriate cross-bridged tetraazamacrocycle. Aquation of these complexes proved difficult, but Chlorohydroxo(4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)chromium)(III) chloride was synthesized directly from chromium(II) chloride complexation followed by exposure or the reaction to air in the presence of water. The four complexes were characterized by X-ray crystal structure determination. All contain the chromium(III) ion in a distorted octahedral geometry and the macrocycle in the cis-V configuration, as dictated by the ethylene cross-bridge. Further characterization of the hydroxo complex reveals a magnetic moment of μeff = 3.95 B.M. and electronic absorbtions in acetonitrile at λmax = 583 nm (ε = 65.8 L/cm mol), 431 nm (ε = 34.8 L/cm mol) and 369 nm (ε = 17 L/cm mol).  相似文献   

13.
The preparation and characterization of dichloro- (hydrotris(1-pyrazolyl)borato)pyridinechromium(III), CrCl2(HB(PYZ)3)Py, (Py = pyridine and HB(PYZ)3-1 is the hydrotris(1-pyrazolyl)borato anion) is described. The structure of the compound was determined by single crystal X-ray diffraction. Crystals were monoclinic, P21/c, a = 11.603(2), b = 9.845(1), c = 16.095(2) Å, β = 96.04(1)° with four formula units in the unit cell. Intensities were measured on a Nicolet P3 diffractometer with use of Mokα radiation. The structure was solved by standard methods and refined to R1 = 0.0601, R2 = 0.0397 based on 3142 independent reflections. Bond lengths and angles are normal. The pyridine molecule is oriented such that the plane bisects the angle between the two cis pyrazole rings. The synthesis and preparation of the related Cr(III) species CrCl2(HB(PYZ)3)pyrazole, Ph4As[CrCl3HB(PYZ)3] and [Cr(HB(PYZ)3)2]PF6 are described and the evaluation of the CrCl2(HB(PYZ)3)L (L = pyridine or pyrazole) species for genotoxicity is discussed.  相似文献   

14.
Theoretical studies on the DNA-binding, DNA-photocleavage and spectral properties of Co(III) polypyridyl complexes [Co(phen)2(L)]3+ (L = pip, hpip, hnaip) have been carried out, using the density functional theory (DFT), Hartree-Fock (HF) and configuration interaction singles (CIS) methods. The optimized geometric structures of these Co(III) complexes in aqueous solution are more close to experimental data than those in vacuo at the B3LYP/LanL2DZ level. Based on the optimized geometric structures in solution, the electronic structures of these Co(III) complexes were analyzed and the trend in the DNA-binding constants (Kb) was reasonably explained. In particular, via the analysis of natural charges of the complexes in ground state and excited state, it is very interesting to find the following: under UV or visible light irradiation, the Co(Ш) polypyridyl complexes undergo an intra-molecular electron transfer from S0 state to T1 state, and the positive charges on the main-ligand in the T1 state are greatly increased, so as to form a radical cation with strong oxidation ability. Meanwhile, the change in geometry of the complexes under light irradiation also helps to the radical cation easily approaching and further oxidating DNA-base-pairs. These results offer the theoretical explanation for the photo-induced oxidation-reduction mechanism which was experimentally proposed on DNA-photocleavage by Co(Ш) polypyridyl complexes. In addition, the electronic absorption spectra of these complexes were calculated and simulated in aqueous solution using the time dependent DFT (TDDFT) method, in satisfying agreement with experimental results, and the properties of experimental absorption bands have been theoretically explained in detail.  相似文献   

15.
Four novel mixed (porphyrinato)(phthalocyaninato) rare earth double-deckers EuIII(TClPP)[Pc(t-BuPhO2)4] {H2TClPP = tetrakis(4-chlorophenyl)porphyrin, H2[Pc(t-BuPhO2)4] = 1,3,10,12(11,13),19,21(20,22),28,30(29,31)-octa-tert-butyl-tetrakis[1,4]benzodioxino[2,3-b:2′,3′-k:2″,3″-t:2?,3?-e1]phthalocyanine}, HEuIII(TClPP)[Pc(α-OC4H9)8] {H2[Pc(α-OC4H9)8] = 1,4,8,11,15,18,22,25-octa-butoxy-phthalocyanine}, EuIII(TClPP)[Pc(MeOPhO)8]{H2[Pc(MeOPhO)8] = 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine} and EuIII(TClPP)[Pc(PhS)8] {H2[Pc(PhS)8] = 2,3,9,10,16,17,23,24-octakis(benzenesulfenyl)phthalocyanine} have been prepared for the first time by treating Eu(acac)(TClPP) with corresponding metal-free phthalocyanine in refluxing 1,2,4-trichlorobenzene (TCB). Typical IR marker bands of the monoanion radical , and show strong bands at 1310, 1319, and 1318 cm−1, and are attributed to pyrrole CC stretchings. The TClPP IR marker band at ca. 1270-1300 cm−1 was not observed for these compounds. These facts indicate that the hole in these double-deckers is mainly localized at the phthalocyanine ring. The marker IR band for phthalocyanine monoanionradical, , appearing at ca. 1312 cm−1 as a medium absorption band was not observed for HEuIII(TClPP)[Pc(α-C4H9)8]. Instead, a significant peak appearing at ca. 1321 cm−1 with weak intensity is assigned to the pyrrole stretching of the phthalocyanine dianion, . This suggests that both the phthalocyanine and porphyrin rings exist as dianions in mixed (porphyrinato)(phthalocyaninato) complex, . The four complexes were characterized by MS, EA, UV-Vis and IR spectra.  相似文献   

16.
Under anaerobic conditions, Shewanella putrefaciens is capable of respiratory-chain-linked, high-rate dissimilatory iron reduction via both a constitutive and inducible Fe(III)-reducing system. In the presence of low levels of dissolved oxygen, however, iron reduction by this microorganism is extremely slow. Fe(II)-trapping experiments in which Fe(III) and O2 were presented simultaneously to batch cultures of S. putrefaciens indicated that autoxidation of Fe(II) was not responsible for the absence of Fe(III) reduction. Inhibition of cytochrome oxidase with CN resulted in a high rate of Fe(III) reduction in the presence of dissolved O2, which suggested that respiratory control mechanisms did not involve inhibition of Fe(III) reductase activities or Fe(III) transport by molecular oxygen. Decreasing the intracellular ATP concentrations by using an uncoupler, 2,4-dinitrophenol, did not increase Fe(III) reduction, indicating that the reduction rate was not controlled by the energy status of the cell. Control of electron transport at branch points could account for the observed pattern of respiration in the presence of the competing electron acceptors Fe(III) and O2.  相似文献   

17.
Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.  相似文献   

18.
The lanthanide ion catalyzed trans-cis isomerizations of trans-bis(oxalato)diaquochromate(II) and trans-bis(malonato)diaquochromate(III) have been studied. A linear free energy relationship was found correlating the catalytic rate constants for the oxalate reaction with the corresponding formation constants of complexes formed between simple monocarboxylic acids and the light (LaGd) members of the lanthanide series. The results indicates that for this portion of the series, the reaction mechanism is related to the formation of monocarboxylate complex intermediates. When the ionic radius of the lanthanide ion decreases below a particular value (as in the latter half of the series), the metal ion remains coordinated to both carboxylates of the oxalate ion rather than simply binding to only one carboxylate. In either situation, isomerization to the cis product eventually occurs, and the lanthanide ion is released.The reaction rates associated with the trans-bis(malonato)diaquochromate(III) reaction were found to be significantly slower than those of the corresponding oxalate system. However, in the malonate system, no linear free energy relationship was found relating the catalytic rate constants with the corresponding formation constants of monocarboxylic acids. One does find a linear relationship between the catalytic rate constants for the malonate reaction and the log K1 values for the corresponding lanthanide/malonate complexes. During the course of the trans-cis isomerization, the lanthanide ion chelates the dissociated malonate group of a pentavalent Cr(III) intermediate. In the mechanism the lanthanide ion does not aid in ring opening, and neither does it singly bond to the intermediate  相似文献   

19.
The anaerobic oxidation of cysteine, Cys, by Mn(III) in acetic acid solutions has been followed by use of a stopped-flow spectrophotometric method at a temperature of 20 °C. The formation and disappearance of the [Mn(OAc)2Cys] complex was monitored at 350 nm. The rate depends strongly on the acetic acid concentration (and hence also on pH) and led to the conclusion that more than one cysteine-containing species was involved. These mono-cysteinyl complexes are formed by the loss of two protons from the cysteine - one from the - SH and the other from either the -NH3+ or, more likely, the -COOH which is partially protonated at the low pH values involved (0.5-2.5). The rate-determining reprotonation of the bound -COO (or -NH2) is then accompanied by internal electron transfer yielding Mn(II) and the cysteinyl radical, Cys•, which then dimerises to form (inactive) cystine. At high acetic acid concentrations (60-90% AcOH) the tris-acetato species, [Mn(OAc)3], predominates together with some of the bis-complex, [Mn(OAc)2]+, and the active species is [Mn(OAc)2Cys] which decomposes with a rate constant of k2=16.8±0.9 M−1 s−1. At low acetic acid concentrations (20-30% AcOH) the mono-acetato species predominates and the reactive species is [Mn(OH)Cys] for which the rate of decomposition=k2=(1.32±0.11)×104 M−1 s−1. The relative values of the rate constants obtained are discussed, as is the bonding of cysteine to manganese(III).  相似文献   

20.
A new process for the removal of NOx by a combined Fe(II)EDTA absorption and microbial reduction has been demonstrated, in which part of the Fe(II)EDTA will be oxidized by oxygen in the flue gas to form Fe(III)EDTA. In former studies, strain FR-2 has been found to reduce Fe(III)EDTA efficiently. Otherwise, it has been reported that bio-electro reactor could efficiently provide a chance for simultaneous denitrification and metal ion removal. Therefore, a use of bio-electro reactor is suggested to promote the reduction of Fe(III)EDTA by strain FR-2 in this paper. The results showed that the concentration of Fe(III)EDTA decreased rapidly when electric current was applied, and that as the current density rose, the Fe(III)EDTA reduction rate increased while followed by a decrease afterward. The formation of the biofilm on the electrode was observed by ESEM (Environmental Scan Electro-Microscope). In addition, the Fe(III)EDTA reduction rate obviously decreased with the existence of NaNO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号