首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Australian species of the genus Trigonopterus Fauvel are revised. Eight previously recognized species are redescribed and 24 additional new species are described: Trigonopterus allaetus Riedel, sp. n., Trigonopterus athertonensis Riedel, sp. n., Trigonopterus australinasutus Riedel, sp. n., Trigonopterus australis Riedel, sp. n., Trigonopterus bisignatus Riedel, sp. n., Trigonopterus bisinuatus Riedel, sp. n., Trigonopterus boolbunensis Riedel, sp. n., Trigonopterus cooktownensis Riedel, sp. n., Trigonopterus daintreensis Riedel, sp. n., Trigonopterus deplanatus Riedel, sp. n., Trigonopterus finniganensis Riedel, sp. n., Trigonopterus fraterculus Riedel, sp. n., Trigonopterus garradungensis Riedel, sp. n., Trigonopterus hasenpuschi Riedel, sp. n., Trigonopterus hartleyensis Riedel, sp. n., Trigonopterus kurandensis Riedel, sp. n., Trigonopterus lewisensis Riedel, sp. n., Trigonopterus montanus Riedel, sp. n., Trigonopterus monteithi Riedel, sp. n., Trigonopterus mossmanensis Riedel, sp. n., Trigonopterus oberprieleri Riedel, sp. n., Trigonopterus robertsi Riedel, sp. n., Trigonopterus terraereginae Riedel, sp. n., Trigonopterus yorkensis Riedel, sp. n.. All new species are authored by the taxonomist-in-charge, Alexander Riedel. Lectotypes are designated for the following names: Idotasia aequalis Pascoe, Idotasia albidosparsa Lea, Idotasia evanida Pascoe, Idotasia laeta Lea, Idotasia rostralis Lea, Idotasia sculptirostris Lea, Idotasia squamosa Lea. A new combination of the name Idotasia striatipennis Lea is proposed: Trigonopterus striatipennis (Lea), comb. n.. A key to the species is provided. Australian Trigonopterus occur in coastal Queensland, narrowly crossing into New South Wales. The southern parts of the range are inhabited by species found on foliage. A rich fauna of 19 edaphic species inhabiting the leaf litter of tropical forests is reported for the first time from the Australian Wet Tropics.  相似文献   

2.
The Pseudoroegneria species are perennial grasses in the Triticeae tribe, whose St genome has been linked to several important polyploid species. Due to frequent hybridization and complex genetic mechanism, the relationships within Pseudoroegneria, and within the Triticeae have been heavily disputed. Using the chloroplast rbcL gene we estimated the nucleotide diversity of 8 Pseudoroegneria species. We also examined the phylogenetic relationships within Pseudoroegneria and of Pseudoroegneria within the Triticeae. The estimates of nucleotide diversity indicated that Pseudoroegneria tauri and Pseudoroegneria spicata species had the highest diversity, while Pseudoroegneria gracillima had the lowest diversity. The phylogenetic analysis of Pseudoroegneria placed all P. spicata species into a clade separate from the other Pseudoroegneria species, while the relationship of the other Pseudoroegneria species could not be determined. Due to the groupings of Pseudoroegneria with the polyploid Elymus, our results strongly supported Pseudoroegneria as the maternal genome donor to Elymus. There was also weak support that P. spicata may be the maternal donor to the StH Elymus species.  相似文献   

3.
The two membrane-bound respiratory nitrate reductases of Escherichia coli are encoded by distinct operons at two different loci, chlC and chlZ, on the chromosome. The chlZ locus includes a narK homologue, narU, encoding a nitrite extrusion protein, and narZYWV encoding nitrate reductase Z. No apparent homologue to the narXL operon has been found. Homology between narU and narK on the one hand and narZYWV and narGHJI on the other hand is limited to the coding regions.  相似文献   

4.
《Animal behaviour》1986,34(6):1836-1843
At its southern edge the distribution of the frog Ranidella riparia abuts, with only a narrow zone of overlap, that of its allopatric sibling species R. signifera. In previous reports there was no evidence for any reduced survival of R. riparia in the creeks occupied by R. signifera immediately adjacent to the edge of its distribution. Here we examine the hypothesis that the acoustic environment in those creeks might inhibit successful communication by R. riparia. Although the structural characteristics of the R. riparia call were less suitable than those of R. signifera for transmission through the heavily vegetated habitat characteristic of those creeks, this alone did not inhibit successful reproduction by R. riparia. At a distance of 25 cm the average intensity of a call from an R. riparia male was 24 dB lower than one from R. signifera. In addition R. signifera form a continuous chorus in which the minimum sound intensity always exceeds that of single R. riparia calls at 25 cm. We propose that R. riparia cannot colonize creeks adjacent to their present distribution because the loud noise from R. signifera choruses either suppresses their calling activity, or makes them inaudible to potentially receptive females.  相似文献   

5.
6.
The base of the Furongian Series in the Sino-Korean Block has not been clearly defined due to the lack of the index taxon, Glyptagnostus reticulatus. The Sesong Formation of the Taebaek Group, Taebaeksan Basin, Korea, has been known to range from the Guzhangian Stage of the Cambrian Series 3 to the middle Furongian Series, hence embracing the base of the Furongian Series. Silicified polymerid trilobites were recovered from the middle part of the Sesong Formation. Described are a total of 18 polymerid species of 13 genera: Neodrepanura sp. 1, Teinistion sp. 1, Huzhuia sp. 1, Huzhuia sp. 2, Liostracina simesi, Liostracina sp. 1, Parachangshania monkei, Parachangshania rectangularis nov. sp., Placosema bigranulosum, Fenghuangella laevis nov. sp., Baikadamaspis jikdongensis nov. sp., Baikadamaspis sp. 1, Prochuangia mansuyi, Maladioides coreanicus, Alataspis sesongensis nov. gen., nov. sp., Chuangia sp. 1, and ceratopygids genus and species indeterminate 1 and 2. The stratigraphic occurrence of these trilobites provides a basis for recognition of five zones across the base of the Furongian Series (in ascending order): the Neodrepanura, Liostracina simesi, Fenghuangella laevis, Prochuangia mansuyi, and Chuangia zones. The Neodrepanura and Chuangia zones are provisionally adopted from the previous biostratigraphic scheme, while the three other ones are newly proposed. The recommended base of the Furongian Series in the Taebaek Group of Korea coincides with the base of the Fenghuangella laevis Zone, which appears to represent an episode of profound trilobite faunal turnover.  相似文献   

7.
The structure of the anode space charge sheath of a vacuum arc is studied with allowance for the dependence of the negative anode fall on the ratio of the directed electron velocity v 0 to the electron thermal velocity v T for different values of the flux density of atoms evaporated from the anode. Poisson’s equation for the sheath potential is solved taking into account the electron space charge, fast cathode ions, and slow ions produced due to the ionization of atoms evaporated from the anode. The kinetic equation for atoms and slow anode ions is solved with allowance for ionization in the collision integral. Analytic solutions for the velocity distribution functions of atoms and slow ions and the density of slow ions are obtained. It is shown that the flux of slow ions substantially affects the spatial distribution of the electric field E(z) in the sheath. As the flux density increases, the nonmonotonic dependence E(z) transforms into a monotonic one and the sheath narrows. For a given flux of evaporated atoms Πa, the increase in the ratio of the directed electron velocity to the electron thermal velocity leads again to a nonmonotonic dependence E(z). As z increases, the electric field first increases, passes through the maximum, decreases, passes through the minimum E min, and then again increases toward the anode. There is a limiting value of the ratio (v 0/v T )* at which E min(z) vanishes. At v 0/v T > (v 0/V T )*, the condition for the existence of a steady-state sheath is violated and the profiles of the field and potential in the sheath become oscillating. The dependence of (v 0/v T )* on the flux density of evaporated atoms Π a is obtained. It is shown that the domain of existence of steady-state solutions in the sheath broadens with increasing Π a .  相似文献   

8.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

9.
The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes to the formation of the two lateral pattern elements, whereas the cooperating genes BREVIPEDICELLUS (BP) and REPLUMLESS (RPL) promote replum development. A recent model to explain pattern formation along the mediolateral axis hypothesizes that JAG/FIL activity and BP/RPL function as antagonistic lateral and medial factors, respectively, which tend to repress each other. In this work, we demonstrate the existence of mutual exclusion mechanisms between both kinds of factors, and how this determines the formation and size of the three territories. Medial factors autonomously constrain lateral factors so that they only express outside the replum, and lateral factors negatively regulate the medially expressed BP gene in a non-autonomous fashion to ensure correct replum development. We also have found that ASYMMETRIC LEAVES1 (AS1), previously shown to repress BP both in leaves and ovaries, collaborates with JAG/FIL activity, preventing its repression by BP and showing synergistic interactions with JAG/FIL activity genes. Therefore AS gene function (the function of the interacting genes AS1 and AS2) has been incorporated in the model as a new lateral factor. Our model of antagonistic factors provides explanation for mutant fruit phenotypes in Arabidopsis and also may help to understand natural variation of fruit shape in Brassicaceae and other species, since subtle changes in gene expression may cause conspicuous changes in the size of the different tissue types.  相似文献   

10.
Forty-two samples of Sideritis species (Sideritis scardica, Sideritis raeseri, Sideritis syriaca, Sideritis taurica and Sideritis lanata) from the Balkan Peninsula were evaluated for their polyphenolic profiles in order to establish a correlation between the taxonomy, geographical location and nature and content of phenolic compounds.Eight compounds were detected in all analyzed Sideritis samples: 5-caffeoylquinic acid, lavandulifolioside, verbascoside, isoscutellarein 7-O-allosyl(1→2)glucoside, hypolaetin 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside, isoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside, 3′-O-methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside and 4′-O-methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl-(1→2)-[6″-O-acetyl]-glucoside). They present from 50 to 80% of total phenolic content in S. scardica, S. raeseri, S. syriaca and S. taurica and up to 90% in S. lanata and the similarity of their polyphenolic profiles implies that they are systematically very closely related.Based on their polyphenolic patterns, very good differentiation between the samples of S. lanata (sect. Hesiodia) and S. scardica, S. syriaca and S. raeseri (sect. Empedoclia) was observed, that is mainly due to the very high content of 5-cafeoylquinic acid and very low amount of phenylethanoid glycosides and flavonoid glycosides.The obtained results demonstrate considerable degree of similarity between S. scardica, S. raeseri and Bulgarian S. syriaca that give contribution to the dilemma that Bulgarian S. syriaca is very similar to Turkish S. taurica and suggest further verification of its taxonomic status.  相似文献   

11.
Michel Sartori 《ZooKeys》2014,(445):97-106
The type material of Epeorella borneonia Ulmer, 1939, the sole species of the genus Epeorella Ulmer, 1939 is reinvestigated and a lectotype (male imago) is designated. Based on several morphological structures, the synonymy with Epeorus Eaton, 1881 (Rhithrogeninae) is rejected. Epeorella stat. prop., known only at the winged stages, belongs to the subfamily Ecdyonurinae, and is a probable endemic of the island of Borneo. The newly erected genus Darthus Webb & McCafferty, 2007, also endemic to Borneo and only known by one species at the nymphal stage, is shown to be a junior subjective synonym of Epeorella. The new combination Epeorella vadora (Webb & McCafferty, 2007) is proposed for the species. The distribution of known heptageniid species from the Sunda Islands is discussed.  相似文献   

12.
Many species in the families of Rosaceae, Solanaceae, and Scrophulariaceae exhibit gametophytic self-incompatibility, a phenomenon controlled by two polymorphic genes at the S-locus, style-S (S-RNase) and pollen-S (SFB). Sequences of both genes show high levels of diversity, characteristic of genes involved in recognition of self-incompatibility systems in plants. In this study, S 24 -RNase and SFB 24 alleles were cloned from Prunus armeniaca cv. Chuanzhihong (Chinese apricot). Sequence comparisons of deduced amino acid sequences revealed that the P. armeniaca S 24 -haplotype has different SFB alleles, but shares a single S-RNase allele with P. armeniaca S 4 -haplotype. Moreover, P. armeniaca S 24 -RNase haplotype has a single and three different alleles with S 1 -RNase of P. tenella (dwarf almond) and S 1 -RNase of P. mira (smooth pit peach), respectively. The functionalities of SFB 24 and SFB 4 have been evaluated by pollen tube growth and controlled field tests of P. tenella and P. mira. Genetic analysis of the two intercrosses showed that progenies segregated 1:1 into two S-genotype classes, which is consistent with the expected ratio for semi-compatibility. These findings imply that the allelic function of the S 24 -haplotype is identical to that of the S 4 -haplotype in a self-incompatibility reaction. Thus, these two Prunus S-haplotypes are in fact two neutral variants of the same S-haplotype. The evolution of the S-allele is also discussed in terms of both functions and differences between S 24 - and S 4 -haplotypes in Prunus.  相似文献   

13.
In previous papers we have reported the characterisation of mitochondrial mutator mutants of Schizosaccharomyces pombe. In contrast to nuclear mutator mutants known from other eucaryotes, this mutator phenotype correlates with mutations in an unassigned open reading frame (urf a) in the mitochondrial genome. Since an efficient biolistic transformation system for fission yeast mitochondria is not yet available, we relocated the mitochondrial urf a gene to the nucleus. As host strain for the ectopic expression, we used the nonsense mutant ana r -6, which carries a premature stop codon in the urf a gene. The phenotype of this mutant is characterised by continuous segregation of progeny giving rise to fully respiration competent colonies, colonies that show moderate growth on glycerol and a fraction of colonies that are unable to grow on glycerol. The phenotype of this mutant provides an excellent tool with which to study the effects on the mutator phenotype of ectopic expression of the urf a gene. Since a UGA codon encoding tryptophan is present in the original mitochondrial gene, we constructed two types of expression cassettes containing either the mitochondrial version of the urf a gene (mt-urf a) or a standard genetic code version (nc-urf a; UGA replaced by UGG) fused to the N-terminal import leader sequence of the cox4 gene of Saccharomyces cerevisiae. We show that the expression of the mt-urf a gene in its new location is able to cure, at least in part, the phenotype of mutant ana r -6, whereas the expression of the nc-urf a gene completely restores the wild-type (non-mutator) phenotype. The significant similarity of the urf a gene to the mitochondrial var1 gene of S. cerevisiae and homologous genes in other yeasts suggests that the urf a gene product might be a ribosomal protein with a dual function in protein synthesis and maintenance of mitochondrial DNA integrity.  相似文献   

14.
We have examined the relationship between sperm adhesion and fertilization in the cross species insemination of Arbacia punctulata eggs by Strongylocentrotus purpuratus sperm. As previously reported (Kinsey et al., 1980) the addition of S. purpuratus egg jelly results in induction of the acrosome reaction in sperm and significant numbers of S. purpuratus sperm adhere to A. punctulata eggs. However, in the absence of S. purpuratus egg jelly, S. purpuratus sperm fail to bind to A. punctulata eggs. Although at least 200 S. purpuratus sperm bind to an A. punctulata egg in the presence of S. purpuratus jelly, less than 8% of the eggs are fertilized. The adhesion of S. purpuratus sperm meets the same functional criteria as homologous A. punctulata sperm-egg adhesion. Electron microscopy shows that S. purpuratus sperm that have undergone the acrosome reaction adhere to A. punctulata eggs by their bindin-coated acrosomal process in a manner that is morphologically identical to that observed with homologous A. punctulata sperm. We have also compared the ability of S. purpuratus and A. punctulata sperm to fuse and fertilize with A. punctulata eggs after removal of the vitelline layer. Using high levels of sperm of either species, heterologous as well as homologous fertilization is readily detectable. Under these conditions, where stable binding is not demonstrable, there is no difference in the ability of S. purpuratus and A. punctulata sperm to fertilize A. punctulata eggs. These observations suggest that the failure of S. purpuratus sperm to fertilize A. punctulata eggs under normal conditions may be due to their inability to penetrate the vitelline layer so that they can fuse with the egg plasma membrane. In relation to the possible mechanism of vitelline layer penetration, we have also investigated the mode of action of chymostatin, an inhibitor of chymotrypsin that has been reported to inhibit fertilization of sea urchin eggs (Hoshi et al., 1979). Our findings suggest that the fertilization inhibitory activity of chymostatin is not related to its antichymotrypsin activity. Rather, it appears that this inhibition is due to the induction of an abnormal acrosome reaction in sperm that precludes formation of the acrosome process.  相似文献   

15.
16.
《Palaeoworld》2023,32(3):547-554
Mesotheres (Notoungulata: Typotheria) are among the most common mammals found in upper Miocene to Pliocene deposits of central Argentina, including the classic type Monte Hermoso locality, which defines the Montehermosan South American Land Mammal “Age”. Nevertheless, the correct name for the mesothere species from this site has been shrouded in uncertainty for well over a century due to questions of taxonomic priority, specimen provenance, and ontogenetic changes in dental formula. Since the mesotheres from Monte Hermoso were named, three distinct species have been formally considered as the type species of the genus: (1) Pseudotypotherium bravardi; (2) “Pseudotypotheriummaendrum; and (3) Pseudotypotherium exiguum. However, none of these species is a nominal species of the Pseudotypotherium genus; all three were originally referred to Typotherium. Article 67.2 of the International Code of Zoological Nomenclature (ICZN, 1999) indicates that only species considered as nominal species are eligible to set the type; in the case of Pseudotypotherium, these include: P. pulchrum, P. carlesi, P. hystatum, and P. carhuense. We conclude that Pseudotypotherium pulchrum F. Ameghino, 1904 (holotype MACN A 10299, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ameghino Collection), is the type species of the mesotheriid notoungulate genus from Monte Hermoso. According to Article 68.2, F. Ameghino fixed the type by original designation in 1904 when he described P. pulchrum and included “n. g., n. sp.”. Two of the other species previously considered species P. (= T.) bravardi and P. (= T.) exiguum are invalid as type species according to Article 70.2, since their designations overlooked the previous type fixation. The third species (M. (= T.) maendrum) represents a different mesothere genus (Mesotherium) that only occurs in younger (Pleistocene) deposits. Our analysis puts an end to a historical debate that has been ongoing for more than a century regarding the identity of this well-represented late Miocene–Pliocene mesotheriine genus (Pseudotypotherium). This study provides a solid taxonomic foundation for future studies on intraspecific and ontogenetic variation of Pseudotypotherium pulchrum.  相似文献   

17.
18.
The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.  相似文献   

19.
Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio “sRNA core.”  相似文献   

20.
Two alleles of the rice blast resistance (R) Pik locus, Pik-m and Pik, are each composed of a pair of nucleotide-binding site–leucine-rich repeat (NBS–LRR) genes, referred to as the first gene and the second gene. Pik-m and Pik are unique in that many of the amino acid substitutions between them are distributed in or near the N-terminal coiled-coil (CC) domain of the first gene, suggesting that the CC domain of the first gene plays an important role in determinating their R specificity. To examine this hypothesis, I investigated resistance phenotypes of transgenic plants carrying each of two kinds of domain-swapped Pik-m-based recombinant first genes. Replacement of the LRR domain of Pik-m with the equivalent region of Pik did not change the Pik-m-type specificity, indicating that regions outside the LRR domain are responsible for differentiating the R specificity of Pik-m from Pik. In contrast, replacement of both the NBS and LRR domains of Pik-m with the corresponding region of Pik resulted in loss of blast resistance, suggesting that co-adaptation of polymorphisms in the CC and NBS domains is necessary to maintain resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号