首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
One of the first signs of cell differentiation in the Drosophila melanogaster embryo occurs 3 h after fertilization, when discrete groups of cells enter their fourteenth mitosis in a spatially and temporally patterned manner creating mitotic domains (Foe, V. E. and G. M. Odell, 1989, Am. Zool. 29:617-652). To determine whether cell residency in a mitotic domain is determined solely by cell position in this early embryo, or whether cell lineage also has a role, we have developed a technique for directly analyzing the behavior of nuclei in living embryos. By microinjecting fluorescently labeled histones into the syncytial embryo, the movements and divisions of each nucleus were recorded without perturbing development by using a microscope equipped with a high resolution, charge-coupled device. Two types of developmental maps were generated from three-dimensional time-lapse recordings: one traced the lineage history of each nucleus from nuclear cycle 11 through nuclear cycle 14 in a small region of the embryo; the other recorded nuclear fate according to the timing and pattern of the 14th nuclear division. By comparing these lineage and fate maps for two embryos, we conclude that, at least for the examined area, the pattern of mitotic domain formation in Drosophila is determined by the position of each cell, with no effect of cell lineage.  相似文献   

3.
C. elegans is renowned for its invariant embryogenesis and functions as a major paradigm for a mode of development coupled to an invariant lineage. Recent work, however, suggests that the embryogenesis of the nematode is much more flexible than anticipated. The invariant premorphogenetic stage is formed from variable earlier stages through a sorting of cells. Cells do not act as individuals but already early in embryogenesis a regionalization of the embryo occurs. Cells are diversified by a binary specification of 'abstract' blastomere (regional) identities. The determination of tissues may thus be a very late event. It appears that C. elegans, although assigning cell fates in an invariant lineage pattern, uses the same strategies and mechanisms for embryogenesis as organisms with variable lineages.  相似文献   

4.
5.
腊梅(Chimonanthus praecox)花两性,离心皮雌蕊着生在杯状花托上,柱头线形,干性。花粉经昆虫传播,落在柱头上1 d后萌发,第8d从珠孔进入,第14d左右完成双受精,为珠孔受精。胚乳为核型胚乳;初生胚乳核经短暂休眠进行核分裂,位于合点端的游离核首先形成细胞,并从合点向珠孔端细胞化,第37d胚乳充满整个囊腔。合子经过近2周的休眠后开始分裂,随着胚的发育,大部分胚乳降解,为胚的发育提供营养。合点端的胚乳细胞则侵入合点珠心组织,为胚进一步发育提供营养。其胚胎发生为柳叶菜型。  相似文献   

6.
The early embryogenesis and cell lineage of the pinewood nematode Bursaphelenchus xylophilus was followed from a single-cell zygote to a 46-cell embryo under Nomarski optics, and elongation of the microtubules was studied by immunostaining. As a B. xylophilus oocyte matures, it passes through a passage connecting the oviduct with the quadricolumella, the distal part of the uterus, and reaches the quadricolumella where it stays for a few minutes and is fertilized. After fertilization, the germinal vesicle disappears, an eggshell is formed, and the male and female pronuclei appear. The pronuclei move toward each other and fuse at the center of the egg. Around this time, the microtubule-organizing center appears. The presumptive region of sperm entry into the oocyte becomes the future anterior portion of the embryo. This anterior-posterior axis determination is opposite to that of Caenorhabditis elegans, where the sperm entry site becomes the posterior portion of the embryo. The optimal growth temperatures of these two nematodes also differ in that temperatures of about 30 degrees C afford the fastest growth rate and highest hatching frequency in B. xylophilus. Otherwise, the lineage resembles that of C. elegans with respect to timing, positioning and the axis orientation of each cell division.  相似文献   

7.
胡炜  汪亚平  朱作言 《遗传学报》2003,30(5):485-492
目前动物克隆技术体系极待完善,其极低的成功率及克隆动物普遍存在的早衰、早天现象是阻碍研究深入进行的首要问题,其突破的关键在于对核移植后的细胞核再程序化机制的阐明。从移植核在结构上的重塑、移植核与受体卵细胞质所处的细胞周期及其相互作用、重构胚与两性胚在分子水平的变化等多方面研究表明:受体细胞质的环境对于细胞核的再程序化至关重要,处于有丝分裂各时期的细胞作为核供体一旦移植到卵母细胞后,移植核在卵质环境里将出现结构上的重塑和分子的再程序化;移植核与受体卵问细胞周期的相容性、重构胚的染色体倍性的正确与否,可能是决定重构胚发育率高低的重要因素;合子型基因激活是基因表达再程序化的关键事件之一;印记基因对于体细胞克隆动物移植核的再程序化过程可能起着非常独特的作用。  相似文献   

8.
Control of cell-cycle timing in early embryos of Caenorhabditis elegans   总被引:3,自引:0,他引:3  
A technique has been developed for extruding either substantial amounts of cytoplasm without nuclei or individual nuclei with small amounts of cytoplasm from early embryos of C. elegans after perforating the eggshell with a laser microbeam. This technique, in conjunction with laser-induced cell fusion, has allowed the altering of nuclear/cytoplasmic ratios and the exposing of the nucleus of one cell to cytoplasm from another. Using these approaches the roles of nuclei and cytoplasm in determining the different cell-cycle periods of the several blastomere lineages in early embryos have been examined. It was found that nuclei in a common cytoplasm divide synchronously; enucleated blastomeres retain a cycling period characteristic of their lineage; cycling period is not substantially affected by changes in the ratio of nuclear to cytoplasmic volumes or the DNA content per cell; the period of a cell from one lineage can be substantially altered by introduction of cytoplasm from a cell of another lineage with a different period; and short-term effects of foreign cytoplasm on the timing of the subsequent mitosis differ depending on position of the donor cell in the cell cycle. These results are discussed in connection with models for the action of cytoplasmic factors in controlling cell-cycle timing.  相似文献   

9.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

10.
During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover.  相似文献   

11.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

12.
Sato-Nara K  Fukuda H 《Planta》2000,211(4):457-466
 The synthesis of DNA in nuclei and organellar nucleoids at the various stages of somatic embryogenesis in carrot (Daucus carota L. cv. Kurodagosun) was analyzed using anti-5-bromo-2′-deoxyuridine (BrdU) immunofluorescence microscopy. The active syntheses of both nuclear and organellar DNA started in the cells forming the embryo proper 3 d after the initiation of embryogenesis, but not in cells forming suspensor-like cell aggregates. In the early globular embryo, active DNA syntheses were continuously observed in the whole embryo proper, except for the progenitor cells of the root apical meristem (RAM) and shoot apical meristem (SAM). These were recognized as slowly cycling cells with a non-BrdU-labelled nucleus and strongly BrdU-labelled organellar nucleoids. At the heart- and torpedo-shaped embryo stages, both nuclear and organellar DNA syntheses were inactive in the presumptive RAM and SAM. Thus, slowing down of organellar DNA synthesis is not coupled with, but is later than, that of nuclear DNA synthesis in the progenitor cells of the embryonic RAM and SAM. These findings clearly indicate that the timing of DNA synthesis is similar in the progenitor cells of both the RAM and SAM in the early stages of somatic embryogenesis. Received: 18 January 2000 / Accepted: 2 March 2000  相似文献   

13.
Summary Embryos of the free-living soil nematodeCaenorhadditis elegans are capable of developing normally outside the mother; we have monitored this process in isolated embryos by light microscopy and recorded it on video tape. The size and position of each nucleus were entered into a computer at short time intervals from the 2- to 102-cell stages. Models were reconstructed in which nuclei are represented by spheres and assigned different colors and patterns according to lineage membership. Three-dimensional reconstructions aid visualization of the spatial arrangement of nuclei and demonstrate the small degree of positional variance among individuals. The dynamic processes of nuclear growth during the cell cycle, division, migration, and patern formation can be quantitatively analyzed. Our knowledge of the complete embryonic lineage allows the correlation of nuclear behavior with eventual cellular fate.  相似文献   

14.
Cheutin T  Cavalli G 《PLoS genetics》2012,8(1):e1002465
Polycomb group (PcG) proteins are conserved chromatin factors that maintain silencing of key developmental genes outside of their expression domains. Recent genome-wide analyses showed a Polycomb (PC) distribution with binding to discrete PcG response elements (PREs). Within the cell nucleus, PcG proteins localize in structures called PC bodies that contain PcG-silenced genes, and it has been recently shown that PREs form local and long-range spatial networks. Here, we studied the nuclear distribution of two PcG proteins, PC and Polyhomeotic (PH). Thanks to a combination of immunostaining, immuno-FISH, and live imaging of GFP fusion proteins, we could analyze the formation and the mobility of PC bodies during fly embryogenesis as well as compare their behavior to that of the condensed fraction of euchromatin. Immuno-FISH experiments show that PC bodies mainly correspond to 3D structural counterparts of the linear genomic domains identified in genome-wide studies. During early embryogenesis, PC and PH progressively accumulate within PC bodies, which form nuclear structures localized on distinct euchromatin domains containing histone H3 tri-methylated on K27. Time-lapse analysis indicates that two types of motion influence the displacement of PC bodies and chromatin domains containing H2Av-GFP. First, chromatin domains and PC bodies coordinately undergo long-range motions that may correspond to the movement of whole chromosome territories. Second, each PC body and chromatin domain has its own fast and highly constrained motion. In this motion regime, PC bodies move within volumes slightly larger than those of condensed chromatin domains. Moreover, both types of domains move within volumes much smaller than chromosome territories, strongly restricting their possibility of interaction with other nuclear structures. The fast motion of PC bodies and chromatin domains observed during early embryogenesis strongly decreases in late developmental stages, indicating a possible contribution of chromatin dynamics in the maintenance of stable gene silencing.  相似文献   

15.
用改进的细胞核移植方法构建重构胚   总被引:2,自引:0,他引:2  
为了能够找出一种既容易操作,又不需要特殊设备的核移植方法,对以前的操作进行了改进。首先以预先吸有细胞核或细胞的注射针在固定于持卵针上的卵母细胞透明带上穿刺两个孔,然后一边缓慢地将注射针回拔至卵周隙中,一边逐渐增加持卵针中的负压,直至极体与目标核质被完整吸入持卵针中而完成去核,最后在不拔出注射针的情况下直接注射细胞核或完整细胞进而完成重构胚的构建。用此方法对200个卵母细胞进行注核和注细胞操作,平均完成一个重构胚的构建各自耗时约40s和30s,成功率分别为62·6%和86·0%。用核染料Hoechst33342对卵母细胞的去核效率进行验证,去核成功率达到73·3%。实验证明,用此方法可以在只有倒置显微镜和显微操作仪的条件下一次性快速完成去核和注核,大大提高了细胞核移植的效率和重构胚成活率;更重要的是该方法操作简单,新手可以很快掌握该技术,易于在实际工作中推广应用。  相似文献   

16.
We followed the early embryogenesis of Aphelenchoides besseyi from fertilization to the 4-cell stage under Nomarski optics and examined the chromosome number and structure by DAPI staining. After an oocyte is fertilized by a sperm, the eggshell forms and the male and female pronuclei are reconstructed. The male pronucleus moves toward the female pronucleus, which is located at the center of the egg. They meet, rotate 90°, and fuse. The embryo then divides unequally into a larger anterior AB cell and a smaller posterior P(1) cell. The site of sperm entry into the oocyte seems to become the future anterior pole of the embryo, and thus the formation of an anterior-posterior axis formation is the same as that for Bursaphelenchus xylophilus, but opposite to that for Caenorhabditis elegans. From immunostaining, the fertilizing sperm appears to bring the centrosome into the oocyte. The chromosome structure during the pronuclear meeting as observed by DAPI staining suggests that a haploid sperm (N = 3) fertilizes a haploid oocyte (N = 3) to form a diploid embryo (2N = 6) and that all chromosomes appear to be of a similar size. Unlike C. elegans does, the P(1) cell first divides anterior-posteriorly followed by the AB anterior-posteriorly. These divisions produced the 4-cell stage embryo with 4 cells arranged in a linear fashion, again in contrast to that for C. elegans or B. xylophilus configured in a rhomboid shape.  相似文献   

17.
The nematode Caenorhabditis elegans has been used as a model for developmental biology for decades. Still, the few publicly available spatio-temporal (4D) data sets have conflicting information regarding variability of cell positions and are not well-suited for a standard 4D embryonic model, due to compression. We have recorded six uncompressed embryos, and determined their lineage and 4D coordinates, including nuclear radii, until the end of gastrulation. We find a remarkable degree of stability in the cell positions, as well as little rotational movement, which allowed us to combine the data into a single reference model of C. elegans embryogenesis. Using Voronoi decomposition we generated the list of all predicted cell contacts during early embryogenesis and calculated these contacts up to the ∼ 150 cell stage, and find that about 1500 contacts last 2.5 min or longer. The cell contact map allows for comparison of multiple 4D data sets, e.g., mutants or related species, at the cellular level. A comparison of our uncompressed 4D model with a compressed embryo shows that up to 40% of the cell contacts can be different. To visualize the 4D model interactively we developed a software utility. Our model provides an anatomical resource and can serve as foundation to display 4D expression data, a basis for developmental systems biology.  相似文献   

18.
Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.  相似文献   

19.
We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.  相似文献   

20.
人-兔异种核移植构建克隆胚的实验研究   总被引:1,自引:0,他引:1  
“治疗性克隆”是人类最关注的课题之一,而人体细胞核移植是治疗性克隆的基础和前提。异种核移植的方法虽已被引入人体细胞克隆胚的构建,但供体细胞的类型、培养代数及准备方法与其效率之间的关系尚有待探讨。本实验以不同培养代数和不同准备方法的人卵丘细胞、皮肤成纤维细胞和软骨细胞为供体构建了克隆胚,对其发育情况的比较表明,以卵丘细胞为供体时重构胚的体外发育率高于其余二者,差异显著(P〈0.05);不同培养代数的成纤维细胞克隆胚和不同冷藏天数供体细胞克隆胚体外发育率无明显差异。此外,本实验还尝试用荧光原位杂交法检测所构建的异种克隆胚核遗传物质的来源,结果显示来自人体细胞。本研究表明,人一兔异种核移植构建克隆胚切实可行;体细胞的类型与核移植效率相关;供体细胞的体外培养传代对克隆胚的发育并无影响;而冷藏是一种简便有效的供体细胞准备方法;此外,用FISH方法对重构胚进行核遗传物质的鉴定切实可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号